
CS8451 DESIGN AND ANALYSIS OF ALGORITHMS
OBJECTIVES:

• To understand and apply the algorithm analysis techniques.
• To critically analyze the efficiency of alternative algorithmic solutions for the same problem
• To understand different algorithm design techniques.
• To understand the limitations of Algorithmic power.

UNIT I INTRODUCTION 9
Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types – Fundamentals
of the Analysis of Algorithmic Efficiency –Asymptotic Notations and their properties. Analysis Framework –
Empirical analysis - Mathematical analysis for Recursive and Non-recursive algorithms - Visualization

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 9
Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems - Exhaustive Search -
Travelling Salesman Problem - Knapsack Problem - Assignment problem. Divide and Conquer Methodology – Binary
Search – Merge sort – Quick sort – Heap Sort - Multiplication of Large Integers – Closest-Pair and Convex - Hull
Problems.

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 9
Dynamic programming – Principle of optimality - Coin changing problem, Computing a Binomial Coefficient –
Floyd‘s algorithm – Multi stage graph - Optimal Binary Search Trees – Knapsack Problem and Memory functions.
Greedy Technique – Container loading problem - Prim‘s algorithm and Kruskal's Algorithm – 0/1 Knapsack problem,
Optimal Merge pattern - Huffman Trees.

UNIT IV ITERATIVE IMPROVEMENT 9
The Simplex Method - The Maximum-Flow Problem – Maximum Matching in Bipartite Graphs, Stable marriage
Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 9
Lower - Bound Arguments - P, NP NP- Complete and NP Hard Problems. Backtracking – n-Queen problem -
Hamiltonian Circuit Problem – Subset Sum Problem. Branch and Bound – LIFO Search and FIFO search - Assignment
problem – Knapsack Problem – Travelling Salesman Problem - Approximation Algorithms for NP-Hard Problems –
Travelling Salesman problem – Knapsack problem.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the students should be able to:

• Design algorithms for various computing problems.
• Analyze the time and space complexity of algorithms.
• Critically analyze the different algorithm design techniques for a given problem.
• Modify existing algorithms to improve efficiency.

TEXT BOOKS:
1. Anany Levitin, ―Introduction to the Design and Analysis of Algorithms‖, Third Edition, Pearson Education, 2012.
2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer Algorithms/ C++, Second Edition, Universities
Press, 2007.

REFERENCES:
1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, ―Introduction to Algorithms‖, Third
Edition, PHI Learning Private Limited, 2012.
2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, ―Data Structures and Algorithms‖, Pearson Education,
Reprint 2006.
3. Harsh Bhasin, ―Algorithms Design and Analysis‖, Oxford university press, 2016.
4. S. Sridhar, ―Design and Analysis of Algorithms‖, Oxford university press, 2014.
5. http://nptel.ac.in/

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 1

UNIT-1
INTRODUCTION

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types –
Fundamentals of the Analysis of Algorithmic Efficiency – Asymptotic Notations and their properties. Analysis
Framework – Empirical analysis - Mathematical analysis for Recursive and Non-recursive algorithms – Visualization.

1.1 Notion of an Algorithm
1.1.1 Algorithm

• Algorithm is a sequence of unambiguous instructions for solving a problem i.e) for obtaining a required
output for any legitimate input in a finite amount of time.

• Diagram: The notion of the Algorithm

1.1.2 Need for the analysis of Algorithms:
Example: - computing the greatest common divisor of two integers:

 gcd(m,n) – defined as the largest integer that divides both m and n evenly.

Three methods for solving the same problem:
1. Euclid's Algorithm
2. Consecutive Integer Checking Algorithm
3. Middle School Procedure

Method 1: Euclid's Algorithm
Step 1 : If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 2.
Step 2 : Divide m by n and assign the value of the remainder to r.
Step 3 : Assign the value of n to m and the value of r to n. Go to Step 1.

- based on applying repeatedly the equality
Example:

gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

pseudocode:
ALGORITHM Euclid(m, n)
//Computes gcd(m, n) by Euclid’s algorithm
//Input: Two nonnegative, not-both-zero integers m and n
//Output: Greatest common divisor of m and n

while n ≠ 0 do
r ←m mod n
m←n
n←r

return m

 gcd(m,n) = gcd(n, m mod n)

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 2

Method 2: Consecutive Integer Checking Algorithm
Step 1: Assign the value of min{m, n} to t.
Step 2: Divide m by t. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.
Step 3: Divide n by t. If the remainder of this division is 0, return the value of t as the answer and stop;
 otherwise, proceed to Step 4.
Step 4: Decrease the value of t by 1. Go to Step 2.

-> more complex and slower than Euclid's Algorithm
Example: gcd(60,24)
Step 1: t = min{60,24} = 24 ; m=60 ; n=24
Step 2 : Divide m by t;

Divide 60 by 24 ; remainder ≠ 0 ; Decrease the value of 24 by 1 i.e) 23.
 Divide 60 by 23 ; remainder ≠ 0 ; Decrease the value of 23 by 1 i.e) 22
 Divide 60 by 22 ; remainder ≠ 0 ; Decrease the value of 22 by 1 i.e) 21
 Divide 60 by 21 ; remainder ≠ 0 ; Decrease the value of 21 by 1 i.e) 20
 Divide 60 by 20 ; remainder = 0 ;
now t=20

Step 3: Divide n by t;
Divide 24 by 20; remainder ≠ 0 ; Decrease the value of 20 by 1 i.e) 19.

Divide m by t;
Divide 60 by 19; remainder ≠ 0 ; Decrease the value of 19 by 1 i.e) 18.
Divide 60 by 18; remainder ≠ 0 ; Decrease the value of 18 by 1 i.e) 17.
Divide 60 by 17; remainder ≠ 0 ; Decrease the value of 17 by 1 i.e) 16.
Divide 60 by 16; remainder ≠ 0 ; Decrease the value of 16 by 1 i.e) 15.
Divide 60 by 15; remainder = 0 ;

now t=15
Step 4: Divide n by t;

Divide 24 by 15; remainder ≠ 0 ; Decrease the value of 15 by 1 i.e) 14.
Divide m by t;

Divide 60 by 14; remainder ≠ 0 ; Decrease the value of 14 by 1 i.e) 13.
Divide 60 by 13; remainder ≠ 0 ; Decrease the value of 13 by 1 i.e) 12.
Divide 60 by 12; remainder = 0 ;

Step 4: Divide n by t;
Divide 24 by 12; remainder = 0 ;

Step 5: Return the value of t as answer: t = 12;
So gcd(60,24) = 12.

Method 3: Middle School Procedure .
Step 1: Find the prime factors of m.
Step 2: Find the prime factors of n.
Step 3: Identify all the common factors in the two prime expansions found in Step 1 and Step 2.

(If p is a common factor occurring pm and pn times in m and n, respectively, it should be repeated min{pm, pn } times.)
Step 4: Compute the product of all the common factors and return it as the greatest common divisor of the
 numbers given.

Example: gcd(60,24)
Step 1: the prime factors of 60 = 2 . 2 . 3 . 5
Step 2: the prime factors of 24 = 2 . 2 . 2 . 3
Step 3: Identify all the common factors : 2, 2, 3
Step 4: Compute the product of all the common factors and return;

gcd(60, 24) = 2 . 2 . 3 = 12.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 3

Finding Prime Numbers: (sieve of Eratosthenes)
• simple algorithm for generating consecutive primes not exceeding any given integer n > 1.
• It was probably invented in ancient Greece and is known as the sieve of Eratosthenes
• Steps:

◦ The algorithm starts by initializing a list of prime candidates with consecutive integers from 2 to n.
◦ Then, on its first iteration, the algorithm eliminates from the list all multiples of 2, i.e., 4, 6, and so on.
◦ Then it moves to the next item on the list, which is 3, and eliminates its multiples.
◦ No pass for number 4 is needed: since 4 itself and all its multiples are also multiples of 2, they were

already eliminated on a previous pass.
◦ The next remaining number on the list, which is used on the third pass, is 5.
◦ The algorithm continues in this fashion until no more numbers can be eliminated from the list.
◦ The remaining integers of the list are the primes needed.

• Example: the algorithm to finding the list of primes not exceeding n = 25:

• The remaining numbers on the list are the consecutive primes less than or equal to 25.

ALGORITHM Sieve(n)
//Input: A positive integer n > 1
//Output: Array L of all prime numbers less than or equal to n
for p←2 to n do A[p]←p

for p←2 to √n
do

if A[p] ≠ 0 //p hasn’t been eliminated on previous passes
j ← p ∗ p

while j ≤ n do
A[j]←0 //mark element as eliminated
j ←j + p
//copy the remaining elements of A to array L of the primes

i ←0
for p←2 to n do

if A[p] ≠ 0
L[i]←A[p]
i ←i + 1

return L

Example:
List the prime numbers not exceeding 10

Step 1: 2 3 4 5 6 7 8 9 10
Step 2: 2 3 5 7 9
Step 3: 2 3 5 7

Execution steps of the Algorithm:

Step 1:
[2] [3] [4] [5] [6] [7] [8] [9] [10]

A[P] = 2 3 4 5 6 7 8 9 10

for p ← 2 to √10 i.e) p ← 2 to 3 do

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 4

Step 2:

p=2
if A[2] ≠ 0 ==> 2 ≠ 0 // Not eliminated
j = 2 x 2 = 4
while 4 ≤ 10 do

A[4] = 0 // eliminated and j=4+2= 6 i.e) ≤ 10
A[6] = 0 // eliminated and j=6+2= 8 i.e) ≤ 10
A[8] = 0 // eliminated and j=8+2= 10 i.e) ≤ 10
A[10] = 0 // eliminated and j=10+2= 12 i.e) ≥ 10

Hence comes out of while loop and increments “p”

Step 3:

p=3
if A[3] ≠ 0 ==> 3 ≠ 0 // Not eliminated
j = 3 x 3 = 9
while 9 ≤ 10 do

A[9] = 0 // eliminated and j=9+3= 12 i.e) ≥ 10
Hence comes out of while loop and increments “p”

• Now, After elimination, the array A contains only prime numbers which is copied to the array L.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 5

1.2. Fundamentals of Algorithmic problem solving

Algorithm Design and Analysis Process

1) Understand the problem:
• It is done by reading the problem statement thoroughly and ask questions for clarifying the doubts about the

problem.
• Find out what are the necessary inputs for solving the problem

2) a) Ascertaining the capabilities of computational devices:
• It is necessary to ascertain (decide) the computational capabilities of devices on which the algorithm will be

running.
• From execution point of view algorithm

1. Sequential algorithm
2. Parallel algorithm

✔ Sequential algorithm - runs on a machine in which the instructions are executed one after another.
 Such a machine is called Random Acess Machine(RAM).
✔ Parallel algorithm – Algorithm that take advantage of operations that can be executed concurrently. i.e)

The algorithm that can be executed simultaneously on many different processing devices and then
combined together to get correct result.

• There are certain problems which require huge amount of memory or the problems for which execution time
is an important factor.

• For such problems it is essential to have a proper choice of a computational device which is space and time
efficient.

b) Choosing between exact and approximate problem solving:

• To decide whether the problems is to be solved exactly or approximately.
i) exact algorithm – solving the problem exactly
ii) approximation algorithm - solving the problem approximately.

 Ex: Travelling salesman problem – finding shortest tour through n cities

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 6

c) Deciding on Appropriate Data Structures:
• Data Structure is important for both design and analysis of algorithm
• Choice of proper data structure is required

• Data structure and algorithm work together and these are interdependent.
• Program is possible with the help of algorithm and data structure.

 d) Algorithm Design Techniques:
• Algorithm Design Technique is a general approach to solving problems algorithmically.
• They provide guidance for designing algorithms for new problems
• They are used to classify the algorithms based on the design idea.
• Algorithmic strategies also called as algorithmic techniques or algorithmic paradigm.

• Brute force
• Divide and conquer
• Dynamic programming
• Greedy Technique
• Back Tracking

3) Methods of specifying an Algorithm:
There are various ways for specifying an algorithm.

➢ Using Natural Language – Clear description of an algorithm
➢ Pseudo Code – mixture of natural language and programming language
➢ Flow Chart – diagramatic representation of an algorithm

4) Proving an Algorithm's correctness:
• to prove the correctness of the algorithm. i.e) to prove that the algorithm yields a required result for
every legitimate input in a finite amount of time.
• The common technique is to use mathematical induction (2 Steps)
• If the algorithm is found to be incorrect, it is needed to redesign regarding tha data structures, the
design techniques and so on.

5) Analyzing an Algorithm:
• The following factors should be considerd while analysing an algorithm
✔ Time efficiency - Speed (how fast the algorithm runs)
✔ Space efficieny - memory (howmuch memory the algorithm needs)
✔ Simplicity - easy to understand
✔ Generality - which range of input is accepted

6) Coding an Algorithm:
• Programming an algorithm
• transition from an algorithm to a program
• Test and debug the program

Algorithms + Data Structures = Programs

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 7

1.3. Important Problem Types

1. Sorting
2. Searching
3. String processing
4. Graph problems
5. Combinatorial problems
6. Geometric problems
7. Numerical problems

1) Sorting:
• Rearranging the items of a given list in ascending order
• key – chosen piece of information to sort
• Example: For student records, the key is the alphabets (Name)

• Properties:

i) stable – preserves the relative order of any two equal elements in its input
 ii) in place – does not require extra memory

2) Searching:
• finding a value (search key) in a given list of elements
• two types:

1. Sequential Search
2. Binary Search

3) String processing:
• String – a sequence of characters
• Types:

1. text string – comprises letters, numbers and special characters
2. bit string – comprises zeros and ones
3. gene sequence – strings of characters of {A,C,G,T}

• String Matching – Searching for a given word in a text

4) Graph problems:
• Graph – collection of points(vertices) are connected by line segments(edges)
• used for modeling a variety of real-life applications
• Basic Graph Algorithms:

1. Graph Traversal Algorithm (visiting all the points in a network)
2. Shortest path Algorithm (Finding best route between two cities)

 3. Topological sorting for graphs (Ordering the vertices)
• Example:

◦ Traveling salesman problems (finding shortest tour through n cities)
◦ Graph coloring problem (Assigning smallest number of colors to vertices such that no two adjacent

vertices are the same)

5) Combinatorial problems:
• finding a combinatorial objects
• i.e) computing permutations and combinations
• Ex:

1. Travelling Salesman Problem
2. Graph Coloring Problem

• difficult problems because the number of combinatorial objects grows extremely fast with a problem's size.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 8

• No known algorithms for solving the problems exactly in an acceptable amount of time
• Many problems are unsolvable problems

6) Geometric problems:
• deal with geometric objects such as points, lines, and polygons
• problems of constructing simple geometric shapes such as triangles, circles and so on.
• Ex:

1. Closest Pair Problem – finding closest pair among n points
2. Convex Hull Problem – finding smallest convex polygon

7) Numerical problems:
• problems that involve mathematical objects of continuous nature.
• can be solved only approximately
• Ex:

- Solving equations and systems of equations
- Computing definite integrals
- evaluating functions

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 9

1.4. Fundamentals of the Analysis of Algorithmic Efficiency

Analysis of algorithm – investigation of an algorithm's efficiency with respect to two resources:
i) running time
ii) memory space

Efficiency – determined by measuring time and space, the algorithm uses for executing the program

Time Efficiency :
• how fast the algorithm runs
• The time taken by a program to complete its task depends on the number of steps in an algorithm

Two types:
Compilation time – time for compilation
Run Time – Execution time depends on the size of the algorithm

Space Efficiency :
• The number of units the algorithm requires for memory storage

1.4.1 Analysis framework:

Two kinds of Efficiency:
i) Time Efficiency
ii) Space Efficiency

General Framework:

i) Measuring an input's size
ii) Units for measuring Running Time
iii) Ordres of Growth
iv) Worst-case, Best-case and Average – case Efficiency
v) Recapitulation of the Analysis Framework

i) Measuring an input's size:

• Algorithms run longer on larger inputs
• parameter n – indicating the algorithm's input size (Ex: sorting, searching)

• Ex:
• i) problem of evaluating a polynomial p(x) = anxn + ... +a0 :

◦ input's size – polynomial's degree or number of coefficients
• ii) computing the product of two n-by-n matrices

◦ input's size – total number of elements N in the matrices
• Measuring size of the inputs by the number of bits in the n's binary representation:

• number of bits b; b=լlog2n˩+1

• Ex:

n Log2n լLog2n˩ b

1 0.0000 0 1

9 3.1699 3 4

15 3.9069 3 4

ii) Units for measuring Running Time:
• use standard units of time measurement – seconds, milliseconds

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 10

• count the number of times each of the algorithm's operation is executed
▪ identify the basic operation (most important operation)
▪ number of times the basic operation is executed

• Ex: i) For sorting algorithm, the basic operation is comparison
 ii) For matrix multiplication, the basic operation is multiplication

• Estimating the running time:
T(n) ≈ Cop C(n)

Cop – Basic operation's execution time
C(n) – number of times the Basic operation needs to be executed

• 10 times faster machine - 10 times faster
• Double the input – 4 times longer

• Ex:

iii) Orders of Growth:
• Measuring the performance of an algorithm in relation with input size.

• The function growing the slowest is the logarithmic function.
• the exponential function 2n and the factorial function n! grow so fast

iv) Worst-case, Best-case and Average – case Efficiency
• Ex: Sequential Search

◦ searches for a given item (search key K) in a list of n elements by checking successive elements of the list
until either a match with the search key is found or the list is exhausted.

• ALGORITHM SequentialSearch(A[0..n − 1], K)
//Searches for a given value in a given array by sequential search
//Input: An array A[0..n − 1] and a search key K
//Output: The index of the first element in A that matches K
// or −1 if there are no matching elements

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 11

• Worst-case Efficiency – The worst-case efficiency of an algorithm is its efficiency for the worst-case input of
size n, which is an input (or inputs) of size n for which the algorithm runs the longest among all possible
inputs of that size.

• Best-case Efficiency - The best-case efficiency of an algorithm is its efficiency for the best-case input of size
n, which is an input (or inputs) of size n for which the algorithm runs the fastest among all possible inputs of
that size.

• Average-case Efficiency – make some assumptions about possible inputs of size n
i) successful search- the probability of the first match occurring in the ith position of the list is p/n
ii) unsuccessful search - the number of comparisons will be n with the probability (1− p).

• Successful search: p=1, The average number of key comparisons is n+ 1
2

• Unsuccessful search: p=0, The average number of key comparisons is n
• the average-case efficiency cannot be obtained by taking the average of the worst-case and the best-case

efficiencies.

• Amortized efficiency:
◦ It applies not to a single run of an algorithm but rather to a sequence of operations performed on the same

data structure.
◦ The total time for an entire sequence of n such operations is always significantly better than the worst-

case efficiency of that single operation multiplied by n.

C worst (n) = n

C best (n) = 1

 i ←0
 while i < n and A[i] ≠ K do

i ←i + 1
 if i < n return i
 else return −1

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 12

1.5 Asymptotic Notations and their properties

• To choose best algorithm, it is needed to check the efficiency of the algorithms
• The efficiency of an algorithm can be measured by computing time complexity of each algorithm
• Using asymptotic notations time complexity can be rated as

1. Fastest Possible
2. Slowest Possible
3. Average Time

• asymptotic notations:
◦ O (Big – oh)
◦ Ω (Big Omega)
◦ Θ (Big - Theta)

• t(n) will be an algorithm’s running time and
• g(n) will be some simple function to compare the count with.

i) Big – oh Notation (Ο)
• Method of representing the upper bound of algorithm's running time

Definition:
• A function t(n) is said to be in O(g(n)) denoted as t(n) ϵ O(g(n)), if t(n) is bounded above by some

constant multiple of g(n) for all large n i.e) if there exists some positive constant C and some non-
negative integer n0 such that

• Diagram

Ex:
t(n) = 4n; g(n) = 5n

ii) Big Omega Notation (Ω)
• Method of representing the lower bound of algorithm's running time
• Describes the best case running time of algorithms

Definition:
• A function t(n) is said to be in Ω (g(n)) denoted as t(n) ϵ Ω(g(n)), if t(n) is bounded below by some

positive constant multiple of g(n) for all large n i.e) if there exists some positive constant C and some
non-negative integer n0, such that

t(n) ≥ Cg(n) for all n ≥ no

t(n) ≤ Cg(n) for all n ≥n
0

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 13

• Diagram:

Ex:
t(n) = 5n; g(n) = 4n

iii) Big - Theta Notation - Θ:
• A function t(n) is said to be in Θ(g(n)),denoted by t(n) ϵ Θ(g(n)), if t(n) is bounded both above and

below by some positive constant multiples of g(n) for all large n i.e) if there exists some positive
constants ‘C1’ and’ C2’ and some non-negative integer no such that

C2 g(n) ≤ t(n) ≤ C1g(n) for all n > n0

• Diagram:

Note:
Θ(g(n)) = o(g(n)) ∩ Ω(g(n))

Properties:

Useful Property involving the Asymptotic Notations
• Theorem: If t1(n) O(g∈ 1(n)) and t2(n) O(g∈ 2(n)), then t1(n) + t2(n) O(max{g∈ 1(n), g2(n)}).
• Proof :

Let, four arbitrary real numbers a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 2 max{b1, b2}.
t1(n) O(g∈ 1(n)), t1(n) ≤ c1g1(n) for all n ≥ n1 and
t2(n) O(g∈ 2(n)), t2(n) ≤ c2g2(n) for all n ≥ n2.
Consider, c3 = max{c1, c2}; n ≥ max{n1, n2}

t1(n) + t2(n) ≤ c1g1(n) + c2g2(n)
≤ c3g1(n) + c3g2(n) = c3[g1(n) + g2(n)]
≤ c3 2 max{g1(n), g2(n)}.

Hence, t1(n) + t2(n) O(max{g∈ 1(n), g2(n)}),
with the constants c and n0 required by the O definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 14

• Ex:

t1(n) =
1
2

n(n-1) , t2(n) = n-1

t1(n) O(n∈ 2) , t2(n) O(n) ;∈ i.e) g1(n) = n2, g2(n) = n
t1(n) + t2(n) O(max{g∈ 1(n), g2(n)})

So, t1(n) + t2(n) O(max{n∈ 2, n}) = O(n2)
Using Limits for Comparing Orders of Growth:

Three principal cases

L’Hospital’s rule :

Stirling’s formula:

EXAMPLE 1: Compare the orders of growth of
1
2

n(n-1) and n2.

• Limit is equal to a constant, the functions have the same order of growth or, symbolically,

1
2

n(n-1) ∈ Θ(n2).

EXAMPLE 2 Compare the orders of growth of log2 n and √n.

• limit is equal to zero, log2 n has a smaller order of growth than √ n.
log2 n O(√n).∈

EXAMPLE 3: Compare the orders of growth of n! and 2n

• n! and 2n have the larger order of growth
n! Ω (2∈ n)

Properties of Big – oh:

1. If there are 2 functions t1(n) and t2(n), such that t1(n) ∈O(g1(n)) and t2(n) ∈ O(g2(n)) then
t1(n) + t2(n) = O(max {g1(n), g2(n)})

2. t(n) ∈O(t(n))
3. If there are 2 functions t1(n) and t2(n), such that t1(n) ∈O(g1(n)) and t2(n)∈O (g2(n)) then

t1(n)* t2(n) = O (g1(n)*g2(n))
4. If t(n) ∈O(g(n)) and g(n) ∈O(h(n)) then t(n) ∈O(h(n))
5. In a polynomial the highest power term dominates other terms i.e) maximum degree is considered

Eg: for 3n3+2n2+10
 Time complexity is O(n3)

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 15

6. Any constant values leads to O(1) time complexity. ie, if t(n) = c, then it belongs to O(1) time complexity
7. O(1) < O(log n)< O(n) < O(n2)< O(2n)
8. t(n) = Θ(g(n)) iff t(n) = O(g(n)) and t(n) = Ω(g(n))

• Basic efficiency classes :

Class Name Comments

1 constant - Short of best-case efficiencies,
- an algorithm’s running time typically goes to infinity when its input size grows
infinitely large.

log n logarithmic - a result of cutting a problem’s size by a constant factor on each iteration of the
algorithm
- linear running time.

n linear - Algorithms that scan a list of size n

n log
n

linearithmic - Many divide-and-conquer algorithms in the average case

n2 quadratic - characterizes efficiency of algorithms with two embedded loops
- example : n × n matrices

n3 cubic - characterizes efficiency of algorithms with three embedded loops

2n exponential - algorithms that generate all subsets of an n-element set

n! factorial - algorithms that generate all permutations of an n-element set.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 16

1.6 Empirical Analysis
• Some simple algorithms are very difficult to analyze with mathematical precision and certainty.
• The principal alternative to the mathematical analysis of an algorithm‘s efficiency is empirical

analysis.
• Empirical analysis of an algorithm is performed by running a program implementing the algorithm

on a sample of inputs and analyzing the data observed.

General Plan for the Empirical Analysis of Algorithm Time Efficiency
1. Understand the experiment’s purpose.
2. Decide on the efficiency metric M to be measured and the measurement unit (an operation count vs. a time

unit).
3. Decide on characteristics of the input sample (its range, size, and so on).
4. Prepare a program implementing the algorithm (or algorithms) for the experimentation.
5. Generate a sample of inputs.
6. Run the algorithm (or algorithms) on the sample’s inputs and record the data observed.
7. Analyze the data obtained.

Goals in analyzing algorithms empirically: They include
• checking the accuracy of a theoretical assertion about the algorithm’s efficiency,

• comparing the efficiency of several algorithms for solving the same problem or different implementations of
the same algorithm,

• developing a hypothesis about the algorithm’s efficiency class, and

• ascertaining the efficiency of the program implementing the algorithm on a particular machine.

How the algorithm’s efficiency is to be measured:
➢ The first alternative is to insert a counter (or counters) into a program implementing the algorithm to count the

number of times the algorithm’s basic operation is executed.

➢ The second alternative is to time the program implementing the algorithm in question.

➢ The easiest way to do this is to use a system’s command, such as the time command in UNIX.

➢ Alternatively, one can measure the running time of a code fragment by asking for the system time right
before the fragment’s start (tstart) and just after its completion (tfinish), and then computing the difference
between the two (t finish− t start)

Profiling
• measuring time spent on different segments of a program

• Getting such data called profiling

• is an important resource in the empirical analysis of an algorithm’s running time;

• the data in question can usually be obtained from the system tools available in most computing environments.

Decide on a sample of inputs:
• use a sample representing a “typical” input - a set of instances they use for benchmarking

• to make decisions about the sample size

• and a procedure for generating instances in the range chosen.

Generating Pseudo Random Numbers:
• an empirical analysis requires generating random numbers.

• the problem can be solved only approximately

• its output will be a value of a (pseudo)random variable uniformly distributed in the interval between 0 and

• Algorithms for generating (pseudo)random numbers linear congruential method

ALGORITHM Random(n, m, seed, a, b)
//Generates a sequence of n pseudorandom numbers according to the linear congruential method
//Input: A positive integer n and positive integer parameters m, seed, a, b

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 17

//Output: A sequence r1, . . . , rn of n pseudorandom integers uniformly distributed among integer values between 0
 //and m − 1
//Note: Pseudorandom numbers between 0 and 1 can be obtained by treating the integers generated as digits after the
 //decimal point
r0←seed
for i ←1 to n do
ri←(a ∗ ri−1 + b) mod m

✔ The empirical data obtained as the result of an experiment need to be recorded and then presented for an
analysis.

✔ Data can be presented numerically in a table or graphically in a scatterplot , i.e., by points in a Cartesian
coordinate system.

✔ the form of a scatterplot may also help in ascertaining the algorithm’s probable efficiency class.

a) For a logarithmic algorithm, the scatterplot will have a concave shape

b) For a linear algorithm, the points will tend to aggregate around a straight line or, more generally, to be
contained between two straight lines

c) Scatterplots of functions in (n lg n) and (n2) will have a convex shape making them difficult to
differentiate

Typical scatter plots. (a) Logarithmic. (b) Linear. (c) One of the convex functions.

Applications of the empirical analysis
◦ is to predict the algorithm’s performance on an instance not included in the experiment sample.

◦ Extrapolation: Predicting the values of n outside the sample range.

◦ Interpolation, which deals with values within the sample range.)

Basic differences between mathematical and empirical analyses of algorithms.
• The principal strength of the mathematical analysis is its independence of specific inputs;

• its principal weakness is its limited applicability, especially for investigating the average-case efficiency.

• The principal strength of the empirical analysis lies in its applicability to any algorithm,

• but its results can depend on the particular sample of instances and the computer used in the experiment.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 18

1.7 Mathematical analysis for Recursive and Non-recursive algorithms

1.7. 1. Mathematical Analysis for Recursive Algorithms
• Recursive Algorithm:

◦ The same operation or function is executed a number of times to obtain the result
◦ Recurrence Equation: Equation that defines a sequence recursively

◦ T(n) = T(n-1) + n

• General Plan for Analyzing the Time Efficiency of Recursive Algorithms
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation.
3. Check whether the number of times the basic operation is executed can vary on different inputs of the same

size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately.
4. Set up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation

is executed.
5. Solve the recurrence or, at least, ascertain the order of growth of its solution

Examples:
1. Computing factorial for a number
2. Tower of Hanoi
3. Finding the number of digits

• Example 1: Computing factorial for a number
◦ Compute the factorial function F(n) = n! for an arbitrary nonnegative integer n.

▪ n! = 1 . . . (n − 1) . n
= (n − 1)! . n for n ≥ 1

 and 0!= 1
• compute F(n) = F(n − 1) . n

• ALGORITHM F(n)
 //Computes n! recursively
 //Input: A nonnegative integer n
 //Output: The value of n!
 if n = 0 return 1
 else return F (n − 1) n∗

• Ex: Compute 3!
Solution:

F(3) = F(3-1) * 3 = F(2) * 3
F(2) = F(2-1) * 2 = F(1) * 2
F(1) = F(1-1) * 1 = F(0) * 1
F(0) = 1

F(1) = 1 * 1 = 1
F(2) = 1 * 2 = 2
F(3) = 2 * 3 = 6

• Analysis:
i) Measuring the input's size:

▪ input size - n
ii) Basic operation:

▪ multiplication

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 19

iii) the number of times the basic operation (Multiplication) is executed - M(n).
iv) Recurrence relation:

1. M(n − 1) multiplications are spent to compute F (n − 1), and one more multiplication is needed to
multiply the result by n.

2. M(n) is a function of n, but implicity as a function of its value at another point, n-1. Such equations
are called recurrence relations or recurrences.
v) Solve the recurrence:

To solve the recurrences, an initial condition is needed.
If n= 0 return 1

 Hence

The first is the factorial function F(n) itself,it is defined by the recurrence

• Solution:
✔ Method of backward substitution:

✔ Genaral Formula: M(n) = M(n-i) + i
✔ Mathematucal Induction: (Correctness of the formula)

Substitute i=n
 M(n) = M(n-n)+n
 = M(0) +n = 0 + n
 = n

✔ The time complexity of factorial function is Θ(n)

Example 2: T ower of Hanoi puzzle:
• n disks of different sizes that can slide onto any of three pegs.
• Initially, all the disks are on the first peg in order of size, the largest on the bottom and the smallest

on top.
• The goal is to move all the disks to the third peg, using the second one as an auxiliary, if necessary.
• Only one disk can be moved at a time, and it is forbidden to place a larger disk on top of a smaller

one.

• Steps:
1. To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary),

• first move recursively n − 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary),
• then move the largest disk directly from peg 1 to peg 3, and, finally,
• move recursively n − 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary)

2. if n = 1, simply move the single disk directly from the source peg to the destination peg.

Towar tlan oi

A diks

Pbro

Solution

Move 1

A

Moe 2

A

12 Move 3

B

Move 4

oye 5

(

3

Move

B A

Moe&

(a

Move 1

Move lo

3
B

Moe R

Move 8

MoVe A

B

Mole 15

A

5 Tolal num bes moves

Mn) = -I

2-)
le) MA) = 15

-16-

MA)=15

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 20

• ALGORITHM Hanoi(n,A,C,B) // n – number of disks, A – Peg 1, C – Peg 3, B – Peg 2
if n==1

Move the disk from A to C
else

Hanoi(n-1,A,B,C)
Move the disk from A to C
Hanoi(n-1,B,C,A)

• Recursive solution:

• Analysis:
i) Measuring the input's size: input size – n (number of disks)
ii) Basic operation: moving one disk
iii) the number of times the basic operation (Moves) is executed - M(n).
iv) Recurrence relation

• The number of moves M(n) depends on n only. The recurrence equation is

Initial condition: M(1) = 1
v) Solve the Recurrence Relation

Substitute i,
M(n) = 2i M(n-i) + 2 i-1 + 2 i-2 + ... + 2 + 1

= 2i M(n-i) + 2 i -1
Initial condition is specified for n=1, for i = n-1,

• The order of growth is O(2n)

• Example 3: Counting The number of binary digits
◦ Finds the number of binary digits in the binary representation of a positive decimal integer.

• ALGORITHM BinRec(n)
 //Input: A positive decimal integer n
 //Output: The number of binary digits in n’s binary representation
 if n = 1 return 1
 else return BinRec(n/2) + 1

• Analysis:
i) Measuring the input's size: input size - n

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 21

ii) Basic operation: Addition
iii) the number of times the basic operation (Addition) is executed - A(n).
iv) Recurrence relation

 Initial condition: A(1) = 0
v) Solve the Recurrence Relation

• let n= 2k, the order of growth for all values of n.

• backward substitutions

after returning to the original variable n = 2k and hence k = log2 n,

1.7.2 Mathematical Analysis of Nonrecursive Algorithms

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation. (As a rule, it is located in the innermost loop.)
3. Check whether the number of times the basic operation is executed, depends only on the size of an input. If it

also depends on some additional property, the worst-case, average-case, and, if necessary, best-case
efficiencies have to be investigated separately.

4. Set up a sum, expressing the number of times the algorithm’s basic operation is executed.
5. Using standard formulas and rules of sum manipulation, either find a closed form formula for the count or, at

the very least, establish its order of growth.

i) Basic rules for Sum manipulation:

ii) Summation formulas

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 22

Examples:
1. Finding largest element in a list of n numbers
2. Element Uniqueness Problem
3. Matrix Multiplication

Example 1: Finding largest element:
• The problem of finding the value of the largest element in a list of n numbers.

 ALGORITHM MaxElement(A[0..n − 1])
//Determines the value of the largest element in a given array
//Input: An array A[0..n − 1] of real numbers
 //Output: The value of the largest element in A

maxval ← A[0]
for i ← 1 to n − 1 do

if A[i] > maxval
maxval ← A[i]

return maxval
• Ex: Determine the value of the largest element in an array

A={34, 65, 100, 67}
Illustration of example:

// MaxElementA[4] Determines the value of the largest element in a given array
//Input: An array A={34,65,100,67}

maxval ←34
for i ←1 to 3 do

if 65>34 // here i=1
maxval←65

if 100 >65 // here i=2
maxval ←100

if 100 >65 // here i=3 //end of elements in the list
return 100

//Output : 100
• Analysis:

i) Measuring the input's size:
• number of elements in the array, i.e., n

ii) Basic operation:
• two operations :

- comparison
- assignment

• the comparison is executed on each repetition
 iii) the number of comparisons:
 C(n) - The number of times the comparison is executed

iv) Set up a sum expression: i.e) Find a formula expressing it as a function of size n.
◦ The algorithm makes one comparison on each execution of the loop, which is repeated for each value of

the loop’s variable i within the bounds 1 and n − 1
 C(n):

v) Find a closed form formula and establish its order of growth:
✔ sum to compute because it is nothing other than 1 repeated n – 1 times.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 23

Example 2: Element Uniqueness Problem:
• Check whether all the elements in a given array of n elements are distinct.

• ALGORITHM UniqueElements(A[0..n − 1])
//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n − 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise

for i ←0 to n − 2 do
for j ←i + 1 to n − 1 do

if A[i]= A[j] return false
return true

• Ex: A={54,78,56,2}
Illustration of example :

//UniqueElements(A[4])
//Input: An array A={54,78,56,2}
i ←0 do // the range of i is from 0 to 2
j← 1 do // the range of j is from 1 to 3

54!=78
j←2

54!=56
j←3

54!=2
i ←1 do

j←2
78!=56

j←3
78!=2

i ←2 do
j←3

56!=2
Return true

//Output: true. All the elements in the array are distinct.

• Analysis:
i) Measuring the input's size:

• number of elements in the array, i.e., n
ii) Basic operation:

• comparison
 iii) the number of comparisons

 C(n) - The number of times the comparison is executed
- depends on the number if elements and theirpositions

iv) Find a formula expressing it as a function of size n.
Worst-case:

- the number of element comparisons is the largest among all arrays of size n.
two kinds of worst-case inputs:

i) arrays with no equal elements
ii) arrays in which the last two elements are the only pair of equal elements.

- one comparison is made for each repetition of the innermost loop, i.e., for each value of the loop
variable j between its limits i + 1 and n − 1;
- this is repeated for each value of the outer loop, i.e., for each value of the loop variable i between
its limits 0 and n − 2.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 24

v) Find a closed form formula and establish its order of growth:

Compute the sum:(Another Method)

• The algorithm needs to compare all n(n-1)/2 distinct pairs of its n elements.

Example 3: Matrix Multiplication:
• Given two n × n matrices A and B, find the time efficiency of the definition-based algorithm for computing

their product C = AB.
• By definition, C is an n × n matrix whose elements are computed as the scalar (dot) products of the rows of

matrix A and the columns of matrix B:

- where C[i, j]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] for every pair of indices 0 ≤ i, j ≤ n − 1.

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 25

• ALGORITHM MatrixMultiplication(A[0..n − 1, 0..n − 1], B[0..n − 1, 0..n − 1])
//Multiplies two square matrices of order n by the definition-based algorithm
//Input: Two n × n matrices A and B
//Output: Matrix C = AB

for i ←0 to n − 1 do
for j ←0 to n − 1 do

C[i, j]←0.0
for k←0 to n − 1 do

C[i, j]←C[i, j]+ A[i, k] ∗ B[k, j]
return C

• Example :
A[2][2]={1,2,4,6}
B[2][2]={6,7,8,9}

C[2][2]={22,25,72,82}
Illustration for example :
//Algorithm: Matrix multiplication (A[2][2], B[2][2])
//Multiplies two square matrices of order n.

//Input: A[2][2]={1,2,4,6} and B[2][2]={6,7,8,9}
for i ←0 //range of i={0,1}
for j ←0 //range of j={0,1}

C[0, 0]←0.0
for k←0 //range of k={0,1}

C[0, 0]←0+ 1*6 // A[0,0]=1 and B[0,0]=6
C[0,0] ←6

For k←1
C[0,0] ← 6+2*8 // A[0,1]=2 and B[1,0]=8
C[0,0] ←22

For j ←1
C[0,1]←0.0
for k←0

C[0, 1]←0+1*7 // A[0, 0]=1 and B[0,1]=7
C[0,1] ←7

For k ←1
C[0,1]←7+ 2*9 // A[0,1]=2 and B[1, 1]=9
C[0,1] ←18

For i ←1 for j ←0
C[1, 0]←0.0
for k←0

C[1, 0]←0+4*6 // A[1,0]=4 and B[0,0]=6
C[1,0] ←24

For k←1
C[1,0] ← 24+6*8 // A[1,1]=6 and B[1,0]=8
C[1,0] ←72

For j ←1
C[1,1]←0.0
for k←0

C[1, 1]←0+4*7 // A[1, 0]=4 and B[0,1]=7
C[0,1] ←28

For k ←1
C[1,1]←28+ 6*9 // A[1,1]=6 and B[1, 1]=9
C[0,1] ←82

//Output: Matrix C [2][2]={22,25,72,82}

• Analysis:
i) Measuring the input's size:

• matrix order, i.e., n

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 26

ii) Basic operation:
 2 operations:

i) Multiplication
ii) Addition

• First consider, the basic operation is multiplication
 iii) the total number of multiplications:

 M(n) - The number of times the multiplication is executed
iv) Set up a sum for the total number of multiplications M(n):
• one multiplication executed on each repetition of the algorithm’s innermost loop

• total number of multiplications M(n) is expressed by the following triple sum:

v) Find a closed form formula and establish its order of growth:
Compute the sum:

Estimate the running time of the algorithm:
• Total number of Multiplications M(n)=n3

cm ------> Time of one multiplication
• Total number of Additions A(n)=n3

T(n)≈ca A(n)= ca n3

ca ------> Time of one addition
• Total Running Time:

• Time complexity of Matrix Multiplication is Ɵ(n3)

Example 4: Counting the binary digits:
• Finds the number of binary digits in the binary representation of a positive decimal integer

• ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation

count ←1
while n > 1 do

count ←count + 1
n←n/2

return count

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 27

• Analysis:
• Measuring the input's size: - input size is n
• Basic operation:
– most frequently executed operation is not inside the while loop but rather the comparison n > 1 that

determines whether the loop’s body will be executed.
– Since the number of times the comparison will be executed is larger than the number of repetitions of the

loop’s body by exactly 1.
- value n is halved on each repetition of the loop

• formula for the number of times the comparison n>1 will be executed is actually log2 n + 1
• Time complexity for counting number of bits of given number is Ɵ(log2 n)

CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS (UNIT - 1) 28

1.8 Visualization
• Third way to study algorithms.
• Algorithm visualization -can be defined as the use of images to convey some useful information about

algorithms.
• That information can be a visual illustration of an algorithm’s operation, of its performance on different kinds

of inputs, or of its execution speed versus that of other algorithms for the same problem.
• To accomplish this goal, an algorithm visualization uses graphic elements—points, line segments, two- or

three-dimensional bars, and so on—to represent some “interesting events” in the algorithm’s operation.

Two principal variations of algorithm visualization:
 Static algorithm visualization
 Dynamic algorithm visualization, also called algorithm animation

➢ Static algorithm visualization shows an algorithm’s progress through a series of still images.
➢ Algorithm animation, on the other hand, shows a continuous, movie-like presentation of an algorithm’s

operations.

Initial and final screens of a typical visualization of a sorting algorithm using the bar representation

Initial and final screens of a typical visualization of a sorting algorithm using the scatterplot representation.

Two principal applications of algorithm visualization:
1. Research and
2. Education.

• Potential benefits for researchers are based on expectations that algorithm visualization may help uncover
some unknown features of algorithms.

• The application of algorithm visualization to education seeks to help students learning algorithms.

Ut-
NOV/Dec- ob

Solve th YecuyYe nta telation

ln)
= n Cn-) +5 >, t)=0

Soln
Method

Backwarel Subst' tuton

tn)= n -)+ 5

aln-1) = xo-)-4+5
«n-a)+S

x tn-a)+5/+5
Sat-s) 6-)-1s

n-15

ie)
tn)= nln-3) + 3xS

n) (n-4)+ Ax5

cn)= xln-i)+ ixs

6 per i hal Condi bion, t)O,

n-i-i i) l-n-

n)= (n-[n-J) + n-) x5

x(n-n+))+ (n-) xs
C)+(n-1)*s

o+n-)xS

5(n-D Un)=

Method a
forward Subeti a ion

in) =x tn-) 1+5

l) =O

()= x (2-) +5 x t)+5 = otS

ie) x() = S

xls)= x3-10+S xo)tS = StS

3)= to

=1S

) = IxS

xH) 3 xS

in) n- xS

fe)nin) = 5tn-)

tn)= 3 Cn-) for n>, xt)=4

Method

Backward Subsh huhon

ln) = 3zln-D
tn-1)» x kn-) -1

3 x[n-]

Bx (n-2) (n-2) 3x (n-2-1)

83x tn-3) 3 tn-3)

3
2(n-3

tn) =8 x tn-i)

As per n hal Condilion, « tD=4

n-=EI

ia) i=n -
-

tn) = 3 xn- (n-

3 n-n +]
3 x t1)

n-

Subehhuhon
Fewad

in)= 3x (n -1)

3 l2 -)= 3 xl) = B x4

(3)
= 3 x(3-D = 3 xca)

» s (ax4)
=4

CA) x ta-i) = a x ()= 3at.a 8

4
i-

rti) = 3 4

tn) = 3

4 3

in)
nln-) +h for n >o,

So

Method
ackward

Substi lution

n) =
n Cn-) +n n-) =tn-2) + (n-)

= xln-){o-tn x cn-a)= «tn-3)+(n-

tr) (n-3)n-2.) +(n-)+n

on)=a (n-i) + n-ti-)+ -
(i-2)+n

«ln-i) +(n-i+) +n-it2)+n

n
iniial

Condi bion, lo) - o

tn= «ln-n) +(n-n+1)
+(n-n+a)+*)

lo) +1t2t

ntn)=
nin+)

2

Method
Porw ard gubgbhuion

tn * in -)+n

cO = « C)- 1)+8 lo) to) +1= 1

e l2)= «l2-)+2
= tt)+2 = +2

la)= «l3-1) +3 Xl2)+ 3 =
t2+3 1+2+ 3

n = H21 3 + +n

xtn)ntna
2

UNIT II
BRUTE FORCE AND DIVIDE-AND-CONQUER

Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems - Exhaustive
Search - Travelling Salesman Problem - Knapsack Problem - Assignment problem. Divide and Conquer
Methodology – Binary Search – Merge sort – Quick sort – Heap Sort - Multiplication of Large Integers
– Closest-Pair and Convex - Hull Problems.

ALGORITHM CLASSIFICATION
 Algorithms that use a similar problem-solving approach can be grouped together. Some of

the famous algorithm types include:

 Backtracking algorithms

 Divide and conquer algorithms

 Dynamic programming algorithms

 Greedy algorithms

 Branch and bound algorithms

 Brute force algorithms

 Randomized algorithms

2.1 BRUTE FORCE ALGORITHMS
• Brute force is a straightforward approach to solving a problem directly based on the problem’s

statement and definitions of the concepts involved.
• the brute-force strategy is indeed the one that is easiest to apply

• A brute force algorithm simply tries all possibilities until a satisfactory solution is found.
• It includes techniques for finding optimal solutions to hard problems quickly.
• Brute force algorithms can be:

◦ Optimizing: Finding the best solution among all solutions
▪ Example: Finding the best path for a traveling salesman.

◦ Satisfying: Finding a satisfying or good solution
▪ Example: Finding a traveling salesman path that is within 10% of optimal solution.

• Problems that can be solved by brute force technique include String Matching, Closest-Pair
and Convex-Hull Problems, Selection Sort, Bubble Sort and Sequential Search

Advantages
• Simplicity
• Wide applicability
• useful for solving small-size instances of a problem

• It is a good method for developing better algorithms.
Disadvantages

• Rarely produces efficient algorithms
• Some brute force algorithms are extremely slow
• Not as creative when compared with other design techniques

2.1.1 Computing a n

Definition:
• Compute an for a nonzero number a and a nonnegative integer n.

Method: Brute – Force
• By the definition of exponentiation,
• computing an by multiplying 1 by a n times

Ex: Compute 53

53 = 5*5*5 = 125

Analysis:
• The brute force algorithm requires n-1 multiplications.
• The recursive algorithm for the same problem, based on the observation that an = an/2 * an/2

requires Θ(log(n)) operations.

2.1.2 String Matching
• Given a string of n characters called the text and a string of m characters (m ≤ n) called the

pattern; find a substring of the text that matches the pattern.
• find i—the index of the leftmost character of the first matching substring in the text
• If matches other than the first one need to be found, a string-matching algorithm can simply continue working until

the entire text is exhausted.

• A brute-force algorithm:

◦ Align the pattern against the first m characters of the text and start matching the
corresponding pairs of characters from left to right until either all the m pairs of the
characters match or a mismatching pair is encountered.

Algorithm BruteForceStringMatch(T [0..n − 1], P[0..m − 1])
//Input: An array T [0…n − 1] of n characters representing a text and an array P[0..m − 1] of m
characters representing a pattern
//Output: The index of the first character in the text that starts a matching substring or −1 if the search is
unsuccessful

for i ←0 to n − m do
j ←0
while j <m and P[j]= T [i + j] do
j ←j + 1
if j = m return i
return −1

Example: Finding “NOT” in “NOBODY_NOTICED _HIM”

The pattern’s characters that are compared with their text counterparts are in bold type.

Analysis:
Worst-case:

• m(n-m+1) number of comparisons are made
• the worst case complexity is O(nm)

Average-case:
• the average case efficiency being ϴ(n).

2.1.3 Closest-Pair Problem Definition
• The closest pair problem is to find the two closest points in a set of n points.
• the points (x, y) Cartesian coordinates and that the distance between two points pi(xi,yi) and pj(xj, yj) is the

standard Euclidean distance

• Brute force algorithm:
◦ computes the distance between every pair of distinct points and
◦ return the indexes of the points for which the distance is the smallest.

ALGORITHM BruteForceClosestPair(P)
//Finds distance between two closest points in the plane by brute force
//Input: A list P of n (n ≥ 2) points p1(x1, y1), . . . , pn(xn, yn)
//Output: The distance between the closest pair of points
d←∞
for i ←1 to n − 1 do
for j ←i + 1 to n do
d ←min(d, sqrt((xi− xj)2 + (yi− yj)2)) //sqrt is square root
return d

Example
// BruteForceClosestPair(P)

//Input: List P with points p1 (3,9) ,p2(6,4) and p3(7,3) d←∞
i ←1 // range of i={1, 2}
j ←2 // range of j={2,3}
d ←min(∞, sqrt(34)) d ← 5.83
j ←3
d ←min(5.83, sqrt(1)) d ← 1
i ←2
j ←3 // range of j={3} d ←min(1, sqrt(52)) d ← 1
return 1
//Output: The index of the closest pair of points are p1 (3,9)and p3(7,3)

Analysis:
• input size is n points
• the basic operation is computing the square root

2.1.4 CONVEX-HULL PROBLEM

Definition: A set of points (finite or infinite) on the plane is called convex if for any two points p and q in

the set ,the entire line segment with the end points at p and q belongs to the set.

(a) Convex sets (b) Sets that are not convex

 The convex hull of a set of n point in the plane is the smallest convex polygone that contains all of

them.

Method : Solved by Brute force method.

Example: A rubber band interpretation of the convex hull

 Take a rubber band and stretch it to include all the nails, then let it snap into place.The convex hull

is the area bounded by the snapped rubber band.

 A formal definition of the convex hull that is applicable to arbitrary set ,including sets of points

that happens to lie on the same line, follows.

Definition: The convex hull of a set of points is the smallest convex set containing S.

 If S is convex , its convex hull is obviously S itself

 If S is a set of two points , its convex hull is the line segment connecting these points.

 If S is a set of three points not on the same line, its convex hull is the triangle with the vertices at

the three points given.

 If three points do lie on the same line, the convex hull is the line segment with its end points at the

two points that are farthest apart.

 The convex hull for this set of eight points is the convex polygon with its vertices at p1, p5, p6, p7,

and p3.

Theorem:

 The convex hull of any set S of n>2 points is a convex polygon with the vertices at some of the

points of S.

Convex hull problem is the problem of constructing the convex hull for a given set S of n points.

 To solve, to find the points that will serve as the Vertices of the polygon in question.

 Extreme points.

Definition: A extreme point of a convex set is a point of the set that is not a middle point of any line

segment with end points in the set.

Property:

 Simplex method-algorithm

 Solves linear programming problems, which are problems of finding a minimum or a

maximum of a linear function of n variables subject to linear constraints.

Algorithm:

 Analytical geometry are needed to implement the algorithm:

Step 1: First, the straight line through two points (x1,y1), (x2,y2) in the coordinate plane can be defined by

the equation ax+by=c where a=y2-y1, b=x1-x2, c=x1y2-y1x2

Step 2: Second, a line divides the plane into two half-planes: for all the points in one of them ax+by>c,

while for all the points on the other ax+by<c.

Step 3: To check whether the points lie on the same side of the line, to check the sign of the expression.

 n(n-1) pairs of distinct points.

 2

 other n-2 points

 No of checks: n(n-1) (n-2)

 2

Analysis: Time efficiency O(n
2
)

2.2 Exhaustive search method

 Exhaustive search is a brute –force approach to combinational problems. (permutations,

combinations or subset of a set)

 It suggests generating each and every element of the problem’s domain, selecting those of them

that satisfy the problem’s constraints, and then finding a desired element.

i. Listing all possible solution.

ii. Evaluate solutions, disqualifying infeasible ones

iii. Find the best solution.

2.2.1: TRAVELING SALESMAN PROBLEM

Definition: To find the shortest tour through a given set of n cities that visits each city exactly once

before returning to the city where it started.

 Modeled by a weighted graph, with the graph’s vertices representing the cities and the edge

weights specifying the distances.

 The problem can be stated as the problem of finding the shortest Hamiltonian circuit of the

graph.(A Hamiltonian circuit defined as a cycle that passes through all the vertices of the graph

exactly once)

 Hamiltonian circuit can also be defined as a sequence of n + 1 adjacent vertices vi0, vi1,...,vin−1, vi0,

where the first vertex of the sequence is the same as the last one and all the other n − 1 vertices are

distinct.

 All circuits start and end at one particular vertex.

Method: Solved by Exhaustive search method.

Algorithm:

Step 1: Get all the tours by generating all the permutations of n-1 intermediate cities.

Step 2: Compute all the tour lengths.

Step 3: Find the shortest among them.

Example: Find the tour using Exhaustive search for the graph.

Problem:

Solution:

A solution to a small instance of the traveling salesman problem by exhaustive search .

Approach:

i. Find out all (n-1)! Possible solution.

ii. Determine the minimum cost.

Possible solution: (n-1)!

 Example: 4: (4-1)! = 3!

2.2.2 : KNAPSACK PROBLEM

Definition: Given n items of known weights w1, w2,...,wn and values v1, v2,...,vn and a knapsack of

capacity W, find the most valuable subset of the items that fit into the knapsack.

 To pick up the most valuable objects to fill the knapsack to its capacity.

Method: Solved by Exhaustive search method.

Example:

Problem: (a) Inside of the Knapsack problem.

Solution: (b) exhaustive search.

Algorithm:

Step 1: Find all the subset of set of n items.

Step 2: Compute the total weight of each subset.

Step 3: Find the subset of the largest value.

Exhaustive Search approach:

Step 1: Consider all the subset of the set of n items given computing the total weight of each subset in

order to identify feasible subset.

Step 2: Finding a subset of the target value among them.

 The number of subset of an n-element set is 2
n

 The exhaustive search leads to a Ω(2
n
) algorithm.

 For both traveling salesman and Knapsack problem, exhaustive search leads to algorithms that are

inefficient on every input.

 Two problems are the best-known examples of NP-hard problems.

 Sophisticated approaches backtracking and branch-and-bound.

2.2.3: ASSIGNMENT PROBLEM

Definition:

 There are n people who need to be assigned to execute n jobs, one person per job.

 Each person is assigned to exactly one job and each job is assigned to exactlyone person.

 If the i
th

 person is assigned to the j
th

 job, the cost is a known quantity C[i, j] for each pair i, j = 1,

2,...,n.

 The problem is to find an assignment with the minimum total cost.

Method: Solved by Exhaustive Search method.

Example:

A small instance of this problem follows, with the table entries representing the assignment costs C[i, j]:

 Cost matrix C.

 The problem calls for a selection of one element in each row of the matrix so that all selected

element are in different columns and the total sum of the selected elements is the smallest

possible.

Feasible solution:

 n-tuples < j1,...,jn > in which the i
th
 component, i = 1,...,n, indicates the column of the element

selected in the i
th
 row.

Example: cost matrix <2,3,4,1> - feasible assignment.

 Person 1 to job 2

 Person 2 to job 3

 Person 3 to job 4

 Person 4 to job 1

There is a one-to-one correspondence between feasible assignment and permutation of the first n

integers.

Exhaustive approach:

Step 1: Generating all the permutation of integers 1,2,….n.

Step 2: Computing the total cost of each assignment by summing up the corresponding elements of the

cost matrix.

Step 3: Finally, selecting the one with the smallest sum.

Example : First few iterations of solving a small instance of the assignment problem by

 exhaustive search.

 <2,1,3,4> cost = 2 + 6 + 1 +4 = 13 Optimal

Permutation n! eg: 4! = 4.3.2.1 = 24

Efficient algorithm for this problem called the Hungarian method.

Time Complexity: O(n!)

Divide and conquer technique

2.3 Divide and Conquer Methodology

 Divide-and-conquer is probably the best-known general algorithm design technique.

General plan:

Divide-and-conquer algorithms work according to the following general plan:

1. A problem is divided into several sub problems of the same type, ideally of about

equal size.

2. The sub problems are solved (typically recursively, though sometimes a different

algorithm is employed, especially when sub problems become small enough).

3. If necessary, the solutions to the sub problems are combined to get a solution to the

original problem.

 Dividing a sub problem into two smaller sub problems.

Example: The problem of computing the sum of n numbers a0,……,an-1.

 If n > 1, we can divide the problem into two instances of the same problem:

 compute the sum of the first numbers and to compute the sum of

the remaining numbers.

 Once each of these two sums is computed, add their values to get the sum:

a0+………+an-1 = (a0+……..+a) + (a +….+an-1).

 problem’s instance of size n is divided into two instances of size n/2.

 instance of size n can be divided into b instances of size n/b.

 Size n is a power of b, recurrence for the running time T (n):

General Divide and Conquer recurrence:

T(n) = aT(n/b)+f(n)

 of

size n into instances of size n/b and combining their solutions.

 order of growth of its solution T (n)

depends on the values of the constants a and b and the order of growth of the

function f (n).

 Master Theorem:

If f(n) ∈ 𝜃(n
d
) where d ≥ 0 in recurrence equation,

then

Example: Computing the sum of n numbers:

The recurrence for the number of additions A(n) made by the

divide-and-conquer summation computation algorithm on inputs of size n =

2k is

A(n) = 2A(n/2) + 1.

a = 2, b = 2, and d = 0; hence, since a >b
d
,

unknown multiplicative constant , while solving a recurrence equation with a

specific initial condition yields an exact answer.

Examples for divide and conquer:

 Binary Search

 Merge Sort

 Quick Sort

 Heap Sort

 Multiplication of large integers

 Closest pair problem

 Convex Hull Problem

Binary Search:

Definition: Binary Search is an efficient algorithm for searching an element in a sorted array.

Method: Divide and conquer.

Working:

 a search key K with the array’s middle element A*m+.

 If they match, the algorithm stops.

 the same operation is repeated recursively

for the first half of the array if K <A[m], and for the second half if K >A[m].

Three conditions:

Steps:

Step 1: First find the middle element.

Step2: Compare the searching element with middle element. If they match the algorithm stops.

Step3: If k<A[m],search in the left side of the middle element.

Step4:If k>A[m], search in the right side of the middle element.

Step5:Recursively do the process until the element is found. If the element is not found in the list return

-1.

Algorithm:

Binary Search(A*0..n − 1+, K)

l←0;

r ←n – 1

while l ≤ r do

if K = A[m] return m

else if K <A[m]

r ←m – 1

else

l ←m + 1

return −1

Example: binary search to searching for K = 70 in the array

iterations of the algorithm:

Analysis:

 count the number of times the search key is compared with an element of the array. three-

way comparisons: k with A[m]

i) k=A[m]

ii) k<A[m

iii)k>A[m]

Worst case:

 find the number of key comparisons

 inputs include all arrays that do not contain a given search key, as well as some successful

searches.

Recurrence relation:

substitute n=2
k

Cworst (2k) = Cworst(2
k-1

)+1

=Cworst(2
k-1

)+2

.

.

.

=Cworst(2
k-k

)+k=Cworst(1)+k=1+k

Cworst(n) = 1 + log2n =

worst-case time efficiency of binary search is

Average case:

 Successful search:

 Unsuccessful search:

Time Complexity:

Best Case Average Case Worst Case

𝜃(1) 𝜃(log2n) 𝜃(log2n)

o O-Divides Ik aua is rto» (0.
aualhalva a Boul

MERG SORT
K sut

hen t meuges

*Sonls a given assan Alo. n- by diuding ik ato hoo halves

Alo. Lo) -] and A 12.n-, seubng cack Kom

Recuusively amd k�n maging hwo Smalua e 80a ted aRiyss

wto a ingle ealid ona

ALGORITHM Meges onlo. . n-J)
Soss auay a [o.. n-] by vecusive mergees1.

Input : An aiuay A[o.. n-11 of orcable elkman l

/louut Azna ASo. .n-tsontid m non do caa.agin� oda

n

Copy Alo. L/a]-] Blo.Lya] -

CoPy ALL%] -] clo. P21-1]

Magesont B[o. . Ln/aJ-)
Mae sost (Clo-.P/2]-1)
Meage CB,C, A)

coy

() The muginah ao Son lid asga Can be done as golas ".

Two poinis au tni talin to pant to ha fuat eoron Ik

Opeyaticn
=

MYg in
Ouas being mengad

Then tk elamenti ponlid , ase Ccnpauad
and IKe 8mallen

Cons liu clid,

then is eddlad to a nes auay being

is
f that, tki uidex b kat Smallea elament is tsamanlid

to point to s immecdiat Suecu

cep ud

tnsaman led

auoq tt tvas

hs operahon Ls Conu'nued unte one b the hoo Fen auLays u

exhouslid, and lkön ha Acmaining elemenls k h aay

ane Copad to ke end 4Ue nouo ala
ALGnORITHM Menge B [o..p-1, c[o.. 9-], A [o. p+9-

/Mages wo Rosid aiays tut One Soyts aay

Dnput: Auaus e[o..p- and C.-] bolk Aonlit

output: Soslia Alo. alo. p19-1] IK ebmans e) B amdC

O 0 K-o
whilu ikp and 11a

BEI C[i)

else L)-C[ilsjJ'

kk+1

copyLj.-9-) nl k..p+9-7|
else cepy B..p-i] Alkpr2]

A)E
The opeseubon ot IK algoitm on lk lust 6, 3, ,7,1,),S4.
Kn exanuplt of mage scrt pexa li on

Melkod
8ep 1 Drvide Ike ist wmlo

) A 3 975 A2
- equal bust

odd - 1Sone mefe elE
ayen

T6 8hepa:8plit batb the

iub isb mto hoco

ealh 4 the us st

457

8rep3: Muging Ke nidiitunl

8ublsts to lái
a sonlid st

457

a 8 4 518 1
fftuent a poun .

-Th ecuren ca rela tiom r umbes Ra4Compasons C n) u

CC) a c2) + Cmerge "y for nI, Ca)>
CmergeO)*tki numbeu Ky conparisens pjormes AL tK meging 3l�ae At caeh shP. exacty ma CompANs on made woRst Lase

Cmuoe tn) > n-i ha recuulon te s

CwoAst n) > a Cwost2) +n -) for n>lCust Ct) o

Maslin Theore , Cwost n Ee (n legn
Accoy eina t tKa

Cwst Cn) = n0g, n - n+1

disadyautoqe Aine anount 4 *xka s toraqe. \h algort thrm eauias

Analysu
n meyqe Sert algoihm, 2 Te cusive Cal aTe made

Kac enca Telaiom

Tn) Tnl)+ TPI2) + Cn for ni
T) o

Tuwo me Bods :
- obtain I lhe Complexit.
i)Masin Thurem
ii) Subshhuhon Me thod

Masi Theore
RacuTTenca Telaion mevqe bart

Tn) TU2) +Tn)t en.
Tr)2TUP2) +en -0
TLOo

Mas Theorem:

Then Ten)= 6 (n ton) a b

a ,b 2

en
nawhare d=

'Ttn) = aln log, n)

The averaq and OAst (a8e Comple merqe sort se n lq

Substitution Mahod:
Reerenea elation Tn) aT (P)+ ¢n for n -O

Tc) -o

Aurme nat
Bubshtute n = a" ti OD

k T= T(:%)+¢

Tu) a T (2*-") +c
ByAubshbuion me tkocd,

T) T (c.a
T) + 2.C.2°. + c.a
T()+ Y.c.s +c.2

aT ()+ c.a+c.

T) T(94 2c 2

k

28T (3) 3 c.

1T() 4.c.

T()+k.c.2

T () +k.C.a

Ta) *T() +* .e.a
o)+rc

T)- K.c.
Teplace n

og,n g
0g, n k.

T) log, n..n

n loq,

Ten) elnl,
and uwoTst lase tirne Complaxila (nte, tog,n)

Time Cornpleril b
Avera

mae kort

Best Case Aveyage Case Nost Case

ecnlog,n) ln loqan) e (nlogan)

Exaples O123, 23,1,A3, 5H,36, 15,3 38, 27 43,3, 9,8a, lo

a86tb, A 78, 368, �15, 3&1,65b, 788, 503. 1

1 4,8, *t1, 4,23, 4, 89,56

(6
UICKSORT

megert SoAtinga aovi hm - based m lki diude and Con ueu approach
megeert0
Divdes l iput's elemenk alcemAing lo ho pohhen tn k

aicksotdivides K put's elumena accendíng to Nakal
t Aeanamges elemants aven tay A [o. .n-] tb

achieve Pai ti tion, a stliatiom whee alU Ike elemen heere
Some Potiion s ane 8mallen lham oa eA ual b A[S] and all
h alements a{ pohion & au uaii lhon er ual bo AC^]:

Alo] .ALs-] A[] A [at) A Ln-]
all au £ AlS] al) ae AAJ

ai pasti hon has bean achieved, AC] w) be m itinal
Pogn ion un The sorli auay, and we can Contruua Borbng the tuo

subaua e elemonts pARceding and olluwing AL] meperients 3
uickson (A L. a]) ALGORITHM

Sonls aSubauay 1uickaort

Input A Aubaxay A[e. . a] of A [o., n-, drdb

t and igkr AnduOS ud n

I output : The Bubauay A LA.. A] Serlia u nendecuairg ordar

8 Pauition (A Il. }) /s s a sput piban

i ckaort (A .A..s -
ielsort CA [5t1. a)

sA pari Ron of Alo..n- tan be achieued by K -follewina algontóm
)Fist, Select an element wilk Tespect to wtose value bar aie gingh

di ide ke ubauay Ths elementu pivot

Seleching he subauas st clemart: A
Pota duues for Lasnangng eleman to aehieve a puuhon

Rbwo scans tk Sub auay

Aiait bo-t.
Conpauing Subauajs lemonls will l pivd eft tp iqet s Can 8larts wh lke se Conel elamau ist eon k Smallua tham tka pivot to be w

part l gubaiay
Bcan slops on eneounteng lke tist elameut ealii Tha

equdl to Ke pivot. 0

Auget- to -t Scan > sl&rb wilk lki last elomont of te subau

clemen ls lanzn than Ke piot to be m te see

Pait IKe subauay

skeps eve
lemants that a larger han [ki piveft

entounteing Ik us clormenTSmalln hen

On eqhal bv lh pivet

Thee liaions
undicos and have nst d, ie) .

scann ng

Al omd ALJ and res ume lka &tens by

muemorting and docrenen ha j Tspechvely.
exe hona

Pall a bP P a aP
)S Stanning aices have cAoRKed oye. iolt>i Parhin

ay alá exehanq� 1h pivet wi ts Al[IJ: aisa

all au P EP2Pall au

) She Scannina ds3tp wtle Pcining bo Ke 6arme elament

havalu Ky au pining to must be eguel tp

hus paubtioneed t

all au £pP all au zt
6edocode

ALGRiTM PastbonA[.
Pasti hiens a subauay by using ik fuist element

as a pivet

72 nput: A subaua A[A..] Alo. .n-i), dabned by et andight

chdites and AlLLa

loutput: A parti fion ef ALA..a,with h 8plt positip Yelinned as

his uneion s yalue

PeA[
i-L .T
apeat

Cpeat
until A[ij2P

Ye peat ja yn hit A Lji<
Awap ALJ, Al,7)

un

wap (AFAljJ) /
undo last Suap whan e >i

8 uwap (A[L], A LjJ)
yen

Fxanple Soating an auloy by icksoxt

a) th amtys kanslomahonsat APivol4 b)The e e i Vve co l

wlh wput

yaues l and ubaua
To Ocksoxt

3 5 6

3 bo unds and 6Put pbh bon

ba pauub n oblai nad
3 1 8

RD,A-1
S-4 5 3 1 7

6 17 3 4 -o, 3
S=

S6
1

8 7
L-2,A=3||-5145

S 3 4

3 2,A=) L3, 1-3
4

3

3

4

9

icksort 's tiuene

The numbes ka Lompausons
made betere a parb bon u

t, Ihe ean nu' ng widites cos ova,n i lhy (optiic

Bat Cose
all ihe 8 plls happen rn Tha muAdle corespemling subauas

best n) uil

bauify 1Re YeCASNë nCa .

for n>
pest)

Chest)

Aceoneling lo lke Masli Thueem, Chcst (n) e e (n ley, n)

na,lds Chet) - n lg,

- alt K spli% wil be skewd to k exliam
hwo Subaulos ull be cmpj wle Sine

wosst Case

One of (he

o lher rl be ust ma Aess nan Ik sime aBub ana

bng Pctuh ono

XAo. . n--iexeatn AMay
Alo] - pivot

8top uft tb aqAl s can

igot o t SLa

put at Poshion o

of tit making n+ Lempausons t et e peati'han and exchanqug th pive - Afol wlk JKalf k algorilhm wil Fid ikl it.
A[1.. n-i] lo Sort

Thetol� imb k Compausons made ill be egual s

Cwomt (n) = (nti) +n+ +3 (ntDnt 2)

Average Caie

pashhon spuk can happen t each poi ti on s(o4 s4n-)
wik he Sama paoba.bi n, the Tecuvenca Yelah on
The

n

Cava (n) Ln+1) + Cag (+Ca (n-1-4] n

Cavg lo) o, ava Ci) =o
2te Aoluli on luns ut bo be

Cavg tn) 2n kn n .38n

CompaotEONs than th hebest dase . 38 more

eyNAE. pivot selection mathod
tthng to a &inples 8ost om 8malu su bfles

A Csi o elirminatian.

xample
Sort he elementk 50 8o lo 90 o 2o 40 7o

30 90

8tep Se leet th pivot eleme nt P- ALAJ

P j
Step2 Inesament wh le A i]<pivot

S topn taamenting when encoun as Ke element laga

than pivot

P

Step Detseman t)while Alj]> Pi vot
- Slop deessment when t encoun ls the element smallea than

Pi vot
60 3o lo 90 o

cn aemen bng
j Exchange A LiJ and ALj] and slárt

and olaCramenta i and Tes pec ivelg.

30 0 70

P

Step 5 Inement
10

50 30 l 40

Step b Desement J

Step 1: Å<, exchange A LiJ and ALj]

530 40

P

8tep 8 In cement
50 3 1o

P

AO

Deeement Sta 1
AO 5 30 1o

8tep 10: Exchange Ihe pivot wlh ALj] and pariion

The aray a exchanqing

30 50 &o

Rigat Bublst aft Sub ust

Step t sub st

Innement i oT tHe left sub ist

& 80 10 4 0 50 8 q0

P J

Step 1& Deument J for Felapt sublist

D 3o 10 400

P_
Step 13 i, Exchange A Ci3 and A[j]

0 30 40 50 8D 0 7o

P
Sfep l Inuement

50 8D 9 70
aolo 30
P

Step 15: Decsement

30

Step 1b:
, EKchange pivot toj A Ljj

o 3 40 50

Step 1 Rgat &ub lit
nuement & Decment

30 40 60 &o0 1o
P i,

Step Ai, Exehange A[] ad Ail
&o 30 AD 50

P

Step 19 Ancement io the igat Bublist

50

P
8tep 2o De Coment

30 AO 5D

P j

Step &: >J,Ex change Aljjand pivot
Partition F ATray

P J
The Hunal 8orlad ust

3o 40 5 1o 8 10

Analysu:
Best case

RouTenee Aalation
CC) cn/2) +c.D tn

cC)=o

Method :1 Mas Jheorerm
C) a cl Ph) +n.

tn)= n
mas Tharem As p

Cl) e tn log n
Best case time complevik e (n log, n)|

Method : Subshbuion Method

Cin) a cloa)+n

Subsbbte n-a*|

ct) 3)**

e()ta

Bubaiute, e(a) k-)

c() Ac ()+ 2*
k-) a c(aka) +a

cca) c(aa)+a a
e (a*) +2.2. 3' +

ae()+2.a*
eWorst ca wn pirot u max or

min b all IKeik.
Sini laly,

cCa a' cca*3) +3.a* n) Cln-)+n

n+n-t)+n-a)t. *24) ca-at ctat)+4 2
ntn4)

2t+n
2

Cin) n(+) cla ac(2**+k.

aC(®) +k.a

c) + k.2 Cc) e()

+

Teplaca. a n)

()9
og, n loq a rsr ar anM bodsM

k loq
lo.n

CCn) l9
ctn) n lo,n

Best case time eomple xiu uick senrt is 6 (n log, n)
ime Complexilg

Best case Average case Norst Case
enloga e tn legan) e (n)

Example O 31,20, 10,14b1,61,97 31

HEAP SORT
Definition:

• Heap sort is a comparison based sorting technique based on Binary Heap data structure.
• First find the maximum element and place the maximum element at the end. Repeat the

same process for remaining element.
• Heap sort is an efficient sorting algorithm with average and worst case time complexities are

in O(n*log n).
• Heap sort is an in-place algorithm i.e. does not use any extra space, like merge sort.
• A heap can be defined as a binary tree with the following two conditions :

◦ The shape property—the binary tree is complete,
▪ i.e., all its levels are full except possibly the last level, where only some rightmost

leaves may be missing.

◦ The heap property—
▪ Max heap - the key in each node is greater than or equal to the keys in its children
▪ Minheap - the key in each node is Smaller than or equal to the keys in its children.

Method: Divide and Conquer
Steps: Consider an array Arr which is to be sorted using Heap Sort.

1. Initially build a max heap of elements in Arr.
2. The root element, that is Arr[1], will contain maximum element of Arr.
3. After that, swap this element with the last element of Arr and heapify the max heap

excluding the last element which is already in its correct position and then decrease the
length of heap by one.

4. Repeat the step 2, until all the elements are in their correct position

ALGORITHM
HeapBottomUp(H[1..n])

//Input: An array H[1..n] of orderable items
//Output: A heap H[1..n]

for i ←[n/2] downto 1 do k←i; v←H[k] heap←false
while not heap and 2 * k ≤ n do
j ←2 * k
if j <n //there are two children
if H[j]<H[j + 1]

j ←j + 1
if v ≥ H[j]

heap←true
else

H[k]←H[j]; k←j H[k]←v

Example:
• Initially there is an unsorted array Arr having 6 elements and then max-heap will be built.
• After building max-heap, the elements in the array Arr will be:

After all the steps, a sorted array is.

Analysis:
Worst Case Time Complexity Best Case Time Complexity Average Time Complexity

O(n*log n) O(n*log n) O(n*log n)
Space Complexity: O(1)

• Heap sort is not a Stable sort, and requires a constant space for sorting a list.
• Heap Sort is very fast and is widely used for sorting

CLOSESTPAIR AND CoNVEX- HULL PROBLEMMS

CLOSEST- PRIR PROBLEM

let Pbe a Aet af n> poins tn lRa Castesian lane.

-he Poink ae distnet

-The Poin l ae
ordaed in nondecuasi ng oreler o

Coodinatë.

I poin sorted

o7d o Coorinate.

th sepasai ut n nonee tnasing

D2 £ns3,Ihe pro blem can be solved by brula raalgm
can be olved by baaertealgm

Pioids f

n+3, divide ha poink ints tuo Bubseb R and P Pand P2

Conw
nl21 and 2l poin 7espche, by daawing a

Tepeeively, by daawing a

m lhod

Verical
ene hough

Ramaeian m a lHai x Cacrciinalis

so haln
poinls lie t tha leßt e or on ke ne

tae
and n l poins lie to lhe oiqRt b or on te he

Solye lh closest-pai problem
ecauasively t0 subs a Pland PA

latd
-

Smallest di tances
betivaen þauis Poink ó P -

bokivæn bauis Poin h P

baluwean
da

Bmallest di tances
beluean paús poin h Pa . baús 1 Pons th Pa

a)Tdea lhe diide and Congua
b)Peetanqle

lhat may
Cont aan

Poins
elosen than minto p ointP

alaor Thm jor t cltest paiu problem

m

=m

The deslace belücen any olha paiy 3 poin at luost ed

Let S ba lhe uit poins Cnside Fe Stip wid l d aound

he Sepavatrg Ane, oblained 7om & and hen ordered u

non doCeasing ordea hoi y CooTdinate
dmin h minumum is tance

*Initially dmin d and Aubaaquant mind.

plxy) -point on lh ist

p('y) - Losen op han dmin ; belong to I Teclan qle.

he poinli uh cach hal) b Teclângle muat be at loast

dutane d apaat

Pseudo code
ALGORTTHM EDhiciernt closet Prir (Pa)

Solves he elosest-pau problem by
iida and Congue

//Dnput
An aray P nz 2 point ti lh Caateslan plane

Sorted

nondecreasing
oTdler thei Cemdinalos and an arra

of lh

8ame p0in sor lád tn nondeciansing oylaa d tz

Coomdenates

/l output
Eucidaan du tana

beltoeen Iha closestpasi pon

n33
selun (he minimal

olusta ound by Ihe
bauteosce

oist aa ound by he brute-osce

else tiTst Tol poink 4 Pts aua Pe

CoPH re

Cop Copy Ihe ame l poin fom 2 to auay

FeRamaineg
n/apoinb b Pt atay P

Copy Ihe &ame LJ Þoina, pom
t5 aaay Q

dEfiüient Clesest Ra (Pa,)

d hident C losestRi CPa, a)

dmin de,daf
m+ P/21 -.x

copy eu he poina a fer whuch I7-ml<d hb auay

dmuns 4-d
Slo num -

5

nio t num - do

while ké num - and s[K]y S[]y)< dm ha9

dmisq min ((skJ. x - $[iJ. a)+ (S[KJy- s[i1y)
dmehs)

kkt

rehrn s q7t (dmoh&q)

Analys
Linear ime bo for dioiding e problem

thto too
e problem

thto too

Paoblems hal) Ie sine
nd Combini ng

he
ebtainod

8oluions
ReCTence relaliom

Ten)
T (n2) +5nd/

en) e (n)

Masters thasrern a2, b=2, d==

TuE eCnlog n)

CoNYEX - HOLL PROBLEM

cnd he mallest Convex poH qon that Centafna n qiven Poisil

he plane

9uick hull-divde and Conquur algitm
et s be a set oh n poin& p,txi,y,J, Pn (xn, yn)

Ln lha artes ian plane

Ihe Poinls ase 30rlkd en nondeeaasing orda lhei

CoOrdinalcs, wi th hes Tesolved by haasing ode

bthay
Coordinales ob ha Poin volvee

theReHtrnost potnt p and Ihe 7ghtmost point pn a a

tso distrnct extreme points ob the set's convez hull .

c dstinct

Uppe and louwa hul& bast þoin

CrS

Aat , P, - lR sraigt une ttoough poinb Ph to dinelid þem

Alat

P.tPn
-Thu re separalis lk poin t to tuco Ret t to tco Re

S
z Set poin& to lh lfE or on Ths une

On thu une

S2 hi Set poin to tha 7ht 4b r onhy une

upphull

The Convex hull S1 Consusb IK une seqmant wi li \hs

end potn at P and Pn and an uPpe boundary
made

up a Pyaorna
al chain

Tea sequence
ane segmenls eonneei ng Bome pon

The uppee bounday s Called lhe pPu hull

own hull:

The Pegenal chain , which seaves as l lotwer beundu

te tonvez hull set Sa s Catted thte loua heu

Convex hui Na enue Bet s is comp vsed db th appa and lo wa hulls-

Conskelion d uppea hull 4 Oce hall

*Fust, I algertfm identiftes vex Pmax tn Si, wich k

athest fom t ue PP.
- Rec s ahe , 1K point thet maximaes ange I ange

4Pman P, Pn Can be selec

Then, th alqenthm cdentifes all Ihe point h Set Si that au

toIKe left of the une P,Pmaz
Quick hull - IKe se ae he Poinls that, along i P and Prnax

XPmax ill make up Re Set S

-Ih poins db S, o Ih ft of the ure PrpozPa

make uP along wi th Pmax and Pa ,
lhz set Si,2

The pein nstde AR Pmax Pa ean be elimenalcd

The algoithm Can Continue eonskiueina Ke uPPea hulls

b Si,
and S,

Aa.cuusivel

Then,
Concatenate ika Jet he uppea hiell Ot lke entia s.

Algotthm's e metre operahons '.

P: (X1, 4), Pa (%3,y and b (s,y) ae

R anbitra poink th tR plane, Ien he aea k

uangla ARPa s equal to one hal b K maqniade

deliminant

e 61m of Re enpresion is posiive end only 'f *i

Pa Point a %3, H3) t ih kft of he lune

Ana -Av 2ase
Best.case uency in lm n)

West Case ey-an en) eln2)

Impoema6(n loqn)

25

MULTIPL) CATION OF 2ARGEINTEGERS

*maniputahon totegers
That are oven loo deeimal digi te long.

Multiplicaboni-each of n aa ha uist numba is multpid

b
numbea

by each o h n digk he
econd numba fes

IR tsläi b digt mulipli caticms.

Too- Too dkqit intege : 3 an tA.

23 can be sapresen lid as: a3 3. lo 3. lo

,o' +4 1o

mulb p
3 *t (2. lo +3 lo* (. to'+4. 1o)

(2 1)
lo+(*4t

3*) lo + (3 t) 1o

3ploaAA

.10+(8+3), 1o' +xI

2o o+ 1)o+l2

(B) M ()P1
(M 33

2At3 *1 (2+3) x Ch+4p -2*1 --3 *4.

pr any par o
d2tnumbers

a »«, ao ad b = bj bo ,
ha

Compud bH tre OTmala

LC = a «b =
PAodue E C can be

Ca a b
the proAuet heu t dig

C a*bo
s the Product 3 Fei Second digii

heTe

(a,+a) « Cbt bo) - Cto)
The produet the

sum the as digh and thesum b the bx dgts

minus H gum Ca andCo

Apply this to mulhplying two n-digit nteqers a andb whese n s

ponhve evennum bea
DudL andConguo Mtthd

Ste * Dude t numbeis th Mi middle

:-
denot lke Jisl hal lha as digts by a and h

- tor b, Ihe notations ae band bo
Step2 econd hal by ao

n2
a a, a, tmplies hat a a

nl2 b b bo implies that b= b lo+bo

ormula

nl2 Slep8 Mulhplcation us Caied oit ing .

n/2

Catb (a, to +a) (b, 1otbo)

(a* b1) 1o+ (a, * bo ta,1 bi) lo +(a,T h.)

C Ca lo+ C. lo+ co .
where

Ca a a by product of fust halves
Cp a bo)Product Becend halves.

C Ca, +a0) * (b,+ bo) - (C2+C%) > roduct 3 C
the Sum he as halves and the Bum 4 the

b's halves minus he Sum b a and Co

xample Multipy a13s a Aot 0 AnalysuÚ: Solp: e2-840, C, -/b9h,Co=A9o

C B40x I64164 x1o +AAS
*Mplicaton n-digit numbers yeauives Treo. mulhph cais

lo*113o

bn/adigit numbeu
Racarvence the numba multipliations Min) iss

Min) 3 M(n/2) or n,|

M C) =1
Backwand subshh«tion :

Ma) 3.Ma)= 3 MC
aI3.MC*]s'M()

M(a)

M()= 3 n

n4n385 .a-c lo, Mn) 3 09
Additions & Suktiacban. A tn)

3 A(M2) -naaded o comput the th7 pduct /, diait
Ratuienee n&mbeu

Teauuse 5 addiio

one Subtahon

a3a
6 (n legt

Toal numler o addijong fsubshac tons hate lhe same asymp toic

ACn)= 3 ALD) Cn for n>
A -

APPly Masts theem.A tn) e elnR)

ond b row a The numbes mulhiplicaicns

Multiplicati'n f ap Integex

Example
Multiplyy 218S 4014

Soln a = 218 S b 4014

SieP
Dvide the num bes the middle

Ao 14
ie) 3 S

Dencte the fist hal ot a's digit by and

Tk Secend half by

and

-for b, l netations are h and bo

b
b, bo

> = 1
bo a b

Multiplicahon

ts
caie

out using
the

n/

sing out

SteP cavme

c
=a*b

=
(arb)

l6"+(a,* bst ag b) I
(bo)

Tormla

C

+Co

C, Ca tae) x (b,
th)(CatCo

C

a,*b

here Ca

()

bo)+(a * b,)

C

number oj digi b

-Pos he evern Num be

Dse Diuide and Con ua Methd

) Compute Ca Ca

a, a bi

Ca
21 * 40

duqt number

Use D C Method

i) Mul tiply 31 *AO (-ugi m)

Ik umbers m k rniddle

ie)a b4

8tep
Denete a ao fb, bo

a ao

Stepa
C2 lo+ C1 1o'+Ce

Ca a * bi

C b.)+ (ao* b.)
Co ao *bo Co

a)ComPwb Ca

= 2*A

ie) C
b)Comp u

C, (a,* bo) (a t bi)

C 4

c)Compute Co
Co= Go * bo

Co = o

exo 4 x 1o to = fdo+40 C
C 8 40

C2840

C ii) Cormpul C

C la, * bo) + (ao * b)

i)C)+(85* 40)
Compu 21 4

Step Dwide

ie)

steP 2 DenstzE

b bo

step3 e Co+ C lo+o

Ca a bi= *I = 2
Ca

C tbe) + (aotb) = (a*4)+(1*))

8+)

Co= ao bo = l4 = 4

C = 2x to+ 9xto+4 20o x 96+4+ =C=294

Compui 35*A

Step Diude
i) 35

Step 2 Dene l

bo b

8tep3 C Ca lo+CtotCo

C2(atbi) =
C (a *) + (a*bi) =(*o) +{5*4) C

Co aD *bo

C = I2x 1o t+ 2oxio'+o = 2oo+ 2oo+0

C=94 +140o
C 1614|

DiUTdo and M.f

Co
C ao * be

Comput

ie)Co = 3s* 14

Shep
Diude

as
sreP 2 Dene G:

b
a

srep3 Cato+C1lo'+ Co

C(a
*ho)

+(aex b) = (s*4)+
(5*)D

= l2+5 =17
C

a,tbi
=

2xI = 3

Co
ao*bo 5 *4 = do

C
3xlo+ITx

io + 2o =
300

+170tao

C= AO

C
C2

lotC 1o Co

C 840
KIo++ 1694 Xlo 49o

C =

8A0 000o + 1614 00 t490

Ans 8561890

FNample d

Multiply tol * 180

UNIT III
DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Dynamic programming – Principle of optimality - Coin changing problem, Computing a
Binomial Coefficient – Floyd‘s algorithm – Multi stage graph - Optimal Binary Search Trees –
Knapsack Problem and Memory functions. Greedy Technique – Container loading problem - Prim‘s
algorithm and Kruskal's Algorithm – 0/1 Knapsack problem, Optimal Merge pattern - Huffman
Trees.

m DyNAM1C PROGRAMMINS
algoithm design lachnique
encral general mehed for opim2ing multisiàge decisiom pcosses

* paRRamming plannng

nantc gramming a technigua or Boluina þoobloma lorth

ovealappina subpeble ms

The Bubproble ms aise oma eCuITence Telatin4 a

Solulion ba aiven pro ble m wi olutions b'di 3naltez

Bub poblems the game YPe

Ralki than solving oveslapping subpo blerms aan ant

again, dunam pegrapmig Buagesk solunA eaeh solvin
he Bmallu subpo ble má ony dnee

Teg ults in a table, wm weh we lan then oht aun a

Soluion tothe oginal

and etording the

pooble m.

Example
tbonaeci numbeu elemeng of hz 3quena

,, , 3,5, f,13, 31, 34,

RacuTcnKe
Fon- Pcn-) + FCn-a) oa n

Two Tnihal Cendi bions
Flo) 0

The paoblem empuing Fem is expregsed n feums i FC)

Bmallu and ovalapping Subpsoble ms eomputing Fn-) t FE-2

An aqant6m bajed n the botom-up dayramuc pLogamm ng

appLcacdh

3.1

Puneple cphimaliy
tion psobm An ophmal Selulin lo any tnstanca an opimuzab protm

Cempesed en ophma solu hon to it subnu tacos

n an opfimal seguente choices o decasims , exch

S ubzeguenee

hences
yt alio be opti mal

he
Dine cand Cenque Pnaie Pegranmi ng

. fihe problem is edioidedno smal
|Subpob lems .

mar dacisin

The ubpre ble ms ave &olvee

nepenAentty
al Ie souhoms Subpoblams

generaid eind al e

oVealappina ub-ulomes

Ane tonsiduad.

8olubn tu hi qiven problem .

etiaent than inde 4

Con ue stauI3 lsstuent

bottom- up appcach tp-down appreac
Sphits d oput at 8pe

detuminsbe points

8puts i iput at

aYApoAble peis

X

3.1.1

3.1.2 Coin Changing problem
• Give change for amount n using the minimum number of coins of denominations

d1<d2 < . . .<dm.
• Dynamic programming algorithm

◦ assuming availability of unlimited quantities of coins for each of the m denominations
d1< d2 < . . . < dm where d1 = 1.

◦ Let F(n) be the minimum number of coins whose values add up to n;
◦ define F(0) = 0.
◦ The amount n can only be obtained by adding one coin of denomination dj to the amount

n − dj for j = 1, 2, . . . , m such that n ≥ dj .
◦ consider all denominations and select the one minimizing F(n − dj) + 1.

▪ 1 is a constant
▪ find the smallest F(n − dj) first and then add 1 to it.

• Recurrence for F(n) :

• compute F(n) by filling a one-row table left to right
• computing a table entry here requires finding the minimum of up to m numbers.

Example:
• Amount n = 6 and denominations 1, 3,4. Find the denominations of coins.

• To find the coins of an optimal solution
◦ backtrace the computations to see which of the denominations produced the minima
◦ the minimum was produced by d2 = 3.
◦ The second minimum (for n = 6 − 3) was also produced for a coin of that denomination.
◦ Thus, the minimum-coin set for n = 6 is two 3’s.

• The answer it yields is two coins.

ALGORITHM
ChangeMaking(D[1..m], n)
//Applies dynamic programming to find the minimum number of coins
//of denominations d1< d2 < . . . < dm where d1 = 1 that add up to a
//given amount n
//Input: Positive integer n and array D[1..m] of increasing positive
// integers indicating the coin denominations where D[1]= 1
//Output: The minimum number of coins that add up to n

F[0]←0
for i ←1 to n do
temp←∞; j ←1
while j ≤ m and i ≥ D[j] do
temp ←min(F [i − D[j]], temp)
j ←j + 1
F[i]←temp + 1
return F[n]

Analysis:
• The time efficiency of the algorithm =O(nm) and
• space efficiency of the algorithm �(n)

CoMAUTNG A BINOMIAL (oEFFCIENT

nene pbm zabon po lem

Ekample dyname pogammtg

ncmal Ceeffu
A binemal is an algebaaie expresi cn that Conlains to tams

x
(x ay = y'

The numkeus hat appcaL as the coafficien tha leims

na buiomal expession, ca led buhomial Co ent

Mà denoid aCCn, k) or (
- Ihe numbei h om bunabornations (au bieb) k elbnana

hom an n-element set (o 4k <n)
ncmal emula :

a+b)"= Cn,o) a"t. +Cn, k) a* *b* +CCn,n) b"

Proptes bunomal tochi cients

C(n,k)= cn-l, k -) + Cin-Lk) for n> k>o

and

3 dnamie pramming
Cempubra CCn,k) th teams af lha small ei and oveulappira

PAcble my Compubn9 c(n-,k -i) and CCn-1k)

Recced Yaluss the bunomal co*bhrcients tn a table

n41 acw and t Columns, umberucd m c to n and

m o t k espocbvely

Table
o Ce mpule C(n,) . l ha lable tew by

5tootng with Aou D and endimg twith acwn

Eoch Acu i (osi< n) s ld lajt fo ugt, s tatin

w IF bo cause CCn,c)

3.1.3

AReus o fhueuq k ae end uwilh 1 on the abe8 man

diagonal

able Computing btnomul Coeuent cn,) by he qranie qrammiang

algenthm

c(n-1Lk-) C(n-1,k)

n- CCn,k)
n

aCompute othu enhtes by the omula,adding l Cenfen the

celus u The peGding sow and tho pretious cotumn end en Tre

p7recacding cu and ha Same eriumn.

313 Peudecede
ALGORTH Binemial (n,k)

Cornputes C(n, k) by tha dy nam1e pogramming ago h

1Input A pa of nonnagabre tfegeas n2k>o

lotput The alue , CCn,k)

to o te n do

+0 to men (<,k) do

-or j=k
eTj] 1

ese cjJ c[i-kj-)+c(i-j]
Ae buan CD,)

Analysu
Time ethiuen tha algoi lhm .

The algovrkmk base operation is addiim.

A A n,k)> btal numbea adin ons Compuhng CCn,1)

form a tot angle
osm a aeetagka

kI Àows bha ble
Aemaining n-k aows

*Split he Sum epressi Atn,k)
nto tuo pasts

A (n,k) = kt J

)+

K k tn - k)

2

nst Constant
Lae enly em

15Example
Homule

Cln,) c(n-l,k-1) + Cln-1,k)

clno)= CCn,n) :1 n> K7d Compute CC3,a

Sep C(3,2) cla,1) + e(3,2)

SCCa) = e(yo) +CCL) Compule T(H)

eth)= c(3,1)+c(3.a)

CCaa) = cta,) c(2,0)+C (2,1)

2,) = c(l,o)+ cCi)
C(3, 2) = a+1=3

CC3) = C(a,0)+c(a,)» 1+2:3
141

CC)

n
C3.) 1+2 =3

C3.)3
o

c(&) = C(2,)+ cl3,2)

3 33
=3

C32) -3
cA) 3 +3 -b

nk

c10,5)

ONT

ao blora

Compulony Bnomlal Coluiem

C(10,S)

Step Table

eotumn- o t6 u) s

t n u) Ko

n/alo
e

S Ctno) =I

cln,n)I

cln,k)- e(n-yk-1)

+ln-,)
) addurg Cantenl

prelaina
3 3

A
Apra vous toumn

n-, -

S (10
15 15 b

35 85|

(8 5 7o 5 5 bbtob

36 sak-c (n,k)

C(ro. 5) A5

Clio,s) = CC9,4) +c(9.s)

Compui da te1,s)

(8 FLoYD's ALGORITHM

Given a wughlid eonneeliA qraph (undireebA or direcli4)

Ihe all-paus 8hortest -paths proble m asks t nd the Aistares

he engtha e the Shestest each veater to aloku

Vudces

33.Ds tance motnn
Racerd The lengths of 8hertest pathe tn an n.by- n nahix

D Called he dutanee
maix .

- elemont odi; en he t row and IFe i column of
- lhe

the matx thditas Ie lkgth b the shesteat pah *m

the tveate to the th veatex C,j 4n).

Erample

) Diqaph
b)Weighl mectix eDutanca mati x

ab c d
a 1o 3 4

b

ao a 3

K W b| 0 0 D 3 os 6

c 7 0, 77

ASa,bb,cac, d> = o

3loudk algeibm
genesate h dutapee mavix .

àvenla R. Ployd

appliable to bots
undiveclss and olirecE W

paevide4 That tha do net on laun a jee «b a

gabve kngtn.

tHoyd's algorthm compulis the dstance mam o a

weighid aph aik n veahtos Theugh a Seaiu n-b- n

malites
Ck)

D.. .,D D,
Lach he mamas Contaihh the lengths 3heteat paths th

D

CaAtaun Constraints en the palhs
*Tha elament t th aoio and Ie 1h colunn

mal D "tK-0,,.n) ó equ o the lengths ha sherlit palb.

3.1.4

OLMona alt path om tha h valbx to te ih yeakx wi th each

Lnimediate Vealer, numbud nt huqhea than k

The Seaies sau with D oloes not allas any tnlimaa

StepConsbuct D-weight malix Tha sp
veahites n the Paths

StepA D SupAD Conläin the lengths the shorliE palha among al

Path hat can use all n Yea icog as tnlimekiate

Skp S computi all lhe elemonl b each matix Doom ih immudia

Prede ceson D)

(K) t element t 1he th Rooand 1he h elumn

mat D

is Lqual b 1he langth b tha 8hortest path ammg alu

paths om the ib Yeatez V: to the hyatex V
DmD°)

-

mclude

inlemmal
z

Velox

oith thun nlamedduale Yeatiue3 numbeed not highu

tnan k

Ve, a list tnliineciati vabtes cach numberaed net higha Than k,
v

pasbtiom all paths inlo two dujont subses

do not use e kh yente Ve as cnlíameduea

se k Yeter Vk thlimediatt

- Paths have the ollowina orTm

V2Yeabes
numbeted k1 Yk , Yeaties num beud <k-1,V

Tdea Hoyd algot lhn ck-/)

Grraphital Repreventalion)

* Each o tha paths s m ade up pats m Vi o Yx

each nliimudta velix numboed not hiqhai than k-1 and a p***

mkbobo v; wit5 enck himudiai veater numbeud not higau

than K. CR-)

length the shntest pal 7m Y b Yx d}

en th he shortest pal mY« ko V d

ReeuTTenu 7 undng he ltngths b the sherlist patAs

Ck-1) Ck) (o)

d,'di +xj mn

The ekemant n the Thaow and Courmn the Cuant

tha
matix D placad by R sum \ka emenbs t tho

BaTe and k kh celumn and in iNe Bame estumn

and the column i4 and mly the la tia sum s Bma tle

th an eument Yalue.

3 3.3 Apphtabon Floya's algeithm

xample
Sfep

ab C
lengths 4 lke

shrlist paths uilk
no inimadrata

Yei cess

bI o

angtk IK Aherlist

path toith ulumaAalt

Yahtes numb aad nat

3
D

min o, 0+0 O

d mn dt, dd

higher thant.

min, o+0o)»
Step3 langlks 1Ik sherlist

3 palhs wilk
imliamedai

b 5 man) d 4 Vabtcs numbucd

mine, +3
min ,5

rot haer Ahan .

a 4 b

5
abe

o 1o 3 (*|

lanqthu Ie Shelist

Path wilE tnteamadint

Venbus numbeed net

Step 4

b

1 4 L&110

hagen than g.

a) b 4

8tep S lenqthu 4 he hualist

paths wilh <nlunaduak
lo 3

A) S 6
Yeabu numbeul not

highur than +

3 Pseudo code

ALGORItHM Floy(w [i.n,)..
1 Tmplaman l Floyd's algenthmforth alt pcis sherlksk paha prtbam

nput Tha weigt mabix wa qaph

Output The ditanta mabra the snostest patha iegth

DW

or o n d
DCijjmin D[ijI, DtiJ+Dlkj]

Aobuun D

B3.5 Analysú
ime ytiuien

Basiu operahon computaton LijJ
cCn)= 2:

2 Cn-1+)

2 n(n-+
K
2

n

(n-'?)

Cr ele (n3)|

3.1.5 Multi-Stage Graph(Finding Shortest path)

• To find the shortest path from source(S) to sink(T) in a multistage graph of G=(V,E) which
is a directed graph.

• A Multistage graph is a directed graph in which the nodes can be divided into a set of
stages such that all edges are from a stage to next stage only
◦ All the vertices are partitioned into the k stages where k>=2.
◦ Each stage consists of set of vertices
◦ The cost of a path from source (denoted by S) to sink (denoted by T) is the sum of the

costs of edges on the path.
• Dynamic Programming Method

◦ obtain the minimum path at each current stage by considering the path length of each
vertex obtained in earlier stage.

◦ The sequence of decisions is taken by considering overlapping solutions.
• The multistage graph can be solved using

◦ Forward approach
◦ Backward approach.

Example:
• Stage 1 consists of node S, Stage 2 consists of nodes A,B,C, Stage 3 consists of nodes D

and E, Stage 4 consists of node T

i)Backward approach:
d(S, T)=min {1+d(A, T),2+d(B,T),7+d(C,T)} …(1)

Compute d(A,T), d(B,T) and d(C,T).
d(A,T)=min{3+d(D,T),6+d(E,T)} …(2)
d(B,T)=min{4+d(D,T),10+d(E,T)} …(3)
d(C,T)=min{3+d(E,T),d(C,T)} …(4)

Compute d(D,T) and d(E,T).
d(D,T)=8
d(E,T)=2

backward vertex=E
• Put these values in equations (2), (3) and (4)

d(A,T)=min{3+8, 6+2}
d(A,T)=8 and the Path is A-E-T
d(B,T)=min{4+8,10+2}
d{B,T}=12 and the Path is A-D-T
d(C,T)=min(3+2,10)
d(C,T)=5 and the Path is C-E-T

Substitute these values of equations (2), (3) and (4) in (1),
d(S,T) = min{1+d(A,T), 2+d(B,T), 7+d(C,T)}

= min{1+8, 2+12,7+5}
= min{9,14,12}

d(S,T)=9 and the Path is S-A-E-T

Solution:
• Shortest distance from Source node(S) to Sink Node(T) is:

The path with minimum cost is S-A-E-T with the cost 9.

Algorithm for Backward Approach
Algorithm Backward_Graph (G, K, n, p)
//solve multistage graph using forward approach
//Input:Given a weighted Graph G
//output: Path with minimum cost using Backward approach
b_cost [1]<- 0
For j = 2 to n do
r<-get-min(j,n)
b_cost[r]<- b_cost [r] + c [r, j];
D[j] = r;
// find a minimum cost path
P[1] = 1;
p[k] = n;
For j = k-1 to 2 do
p[j] = d[p(j+1)];

Analysis:
• Time complexity O(|V| + |E|).

◦ |V| is the number of vertices and
◦ |E| is the number of edges.

ii)Forward approach

d(S,A)=1
d(S,B)=2
d(S,C)=7
d(S,D) = min{1+d(A,D),2+d(B,D)}

= min{1+3,2+4}
d(S,D)=4

d(S,E) = min{1+d(A,E), 2+d(B,E),7+d(C,E)}
= min {1+6,2+10,7+3}
= min {7,12,10}

d(S,E) = 7 i.e. Path S-A-E is chosen.

d(S,T) = min{d(S,D)+d(D,T),d(S,E)+d(E,T),d(S,C)+d(C,T)}
= min {4+8,7+2,7+10}

d(S,T) = 9
Path S-E, E-T is chosen.

Solution:
• Shortest path and distance from Source node(S) to Sink Node(T) is:

The minimum cost=9 with the path S-A-E-T.

Algorithm for Forward Approach:
Algorithm Forward_graph (G, K, n, p[])
//solve multistage graph using forward approach
// Input:Given a weighted Graph G
// output: path with minimum cost
For j = n-1 to 1 do
Let r be a vertex such that is an edge of G and
C[j][r]+ cost[r] is minimum;
Cost [j] = C[j][r] + Cost[r]
D [j] = r
P [1] = 1
P[k] = n
For j = 2 to K-1 do
P[j] = d[P(j-1)];

Analysis:
• Time complexity O(|V| + |E|). Where the |V| is the number of vertices and |E| is the number

of edges

3.1.6

3.1.7

Defn.

Method:

Formula:

RLIDY TECHNIUE

thanmqe making paoble m

The aTedy appreach s0ggesb Consuutchrg a Aoluhon

Theugh a sauonte steps, each expanding
a pazhally

haough
Consc led Soluhon obla'ned Bo a unhl a eomplaz

Soluion v the paoblem Ls a0ac hed

On each 6tep ,
the choico made must be

*easible, i. t has to Bhtishu the problemk Cosaing

amon
locally ophmal, ie, it has to be h best local chcie amang

all teasible
Choites avai lable on that step

ehanged on

AACYOcable , ie., ona made, it Cannot bee

ubseauent steps The algmlhm.

3.2

3.2.1 Container Loading

• A large ship is to be loaded with containers of cargos.
• Different containers will have different weights.

◦ Let wi be the weight of the ith container,
◦ 1 ≤ i ≤ n, and the capacity of the ship is C

• To find out how could the ship can be loaded with the maximum number of containers.

• Greedy Technique:
◦ The ship may be loaded in stages; one container per stage.
◦ At each stage select the one with least weight.
◦ Then the one with the next smallest weight, and so on until either all containers have

been loaded or there is not enough capacity for the next one.
◦ This results in loading maximum number of containers.

• Example :
Suppose that n = 8, [w1, … , w8] = [100, 200, 50, 90, 150, 50, 20, 80], and c = 400.

• Only 4 containers are loaded for the capacity 400
• Not the optimal solution

• Applying Greedy technique
◦ The containers are added in the increasing weight order
◦ 6 containers (greater than 4) are loaded with capacity 390 - Optimal Solution

• The available capacity is now(400-390= 10 units), which is inadequate for any of the
remaining containers.

• Greedy solution we have [x1, , , , , x8] = [1, 0, 1, 1, 0, 1, 1, 1] and Σxi = 6.

Algorithm

Analysis:
• Time complexity = O(n log n)

(3.6) PRIM'S ALGORITHM

XGiven npints,
connaet tham tn ha ehe«pest Pessible way so that

the will be a path belveen eve paii b p eints Given
thwe

points- Yestices

Conecion-eaes

weight CosE

36.] DAini tien
Spannina ree

A 8parning tree a connec ad qreph è i ik connocls4
A

Veatices

acnehc 8ubaraph"(li.e) atu) that Contains all tha Veatices

c1he 3reph
Minimum 8panning 15ee

A minimum paming tsea b a wuahtaConnecte

aph s t 8panning tre he ima llegt weqht , wheve the

est b a trea
esqes esges

dakina as the Bum obhe weiahk m all

Minimum panning e pooble m

-nding

weiahud ome cbA aaph

a minimum sanning ae o a Jven

3.2.2

DisAdvantages in ixhauHxe seach Opproach

)the numba 4 spanning tieas tows exponantialty wi Th

he qraph 8ige

genesatirg
al spannina

treos or a eraph s not

Gaaph and b Bpanning trees

Graph

2

WCT) =3

WCT)=9
w(T) =6

Minimum Spannin

4Pims Algitfm
* Conshuets aminimum 8panning ee Though a

sn uence exparding sub leus.

- înitial sublra asequaca cons u,6 a single veslax

STs selechd m th set V the aphs

On each itexaion, evpand tho ment ee n he qrecdy

simply ataching to dt the neaaagt Vatex

manneR b simp

-The algontthm stops afl
al

e 3aphs
veabtes have

been
cludad tn the Ru barg

tons kutted

not un tha ee all th
aTaphs YeABcos have

cons icted

been
8ince he alen Th m expanes a

iteraboms umbe itera bons= n-1

ebyexaefy one Yealdr on eaeh b u itesaions

Set bges ues
- ihe Ree geneyalkd tauned

as the

pr the u expansirms.

363 Paudo toda
Paum (G)

ALGORITHM

Paims atgenhm o cons Ruttnga minmum spanning a

Input 4 wnqhlid onne e lad grap h {V,E)

loutput Ey the &et esges Comp bing a MST .

v- d
- (v', u) amor a tnd amn mum

- Wekt ecdqe

lhe edqes V,u

Such th af V and u ssn V-v

YUu*f

ETU*}

3. 2 Cord
Twe labels "

name the nuarest Fe Vealox

- length (weigat) he coTexponang eige .

not adjaont Td any
" Of 1he ea verices can

8 label indtatira thais tnhunit" dus tama to

Yabcas that e

be givcn t

The ta veahtes aund

a null tabel er Tha name the noaost oe Veaax

yexicas CL@o Sata) D^3
unsean

inge tontans only Tha yenbtas that ase not n tha

but ae adjatant b at aast Ona lee Vealár
th candidalis om which the naxt lie vertex

selaclidd

unseern -vehca a all tha ote veabcas bth Kaph

tning the naxt Yealix to be added to the unent ae T»(v, E)

betome a tash b ndira a vealak with thc Smattest

dutanca 1abel th he &et V-VT
A AE idanh tina a veater u to be addad to the lie, pertm

two operahon

Moveu u* om the set V-V7 to 1he Set hae Verthes V

i)or each amasnu ng veatex u in V-VT thar is conneclé

ouby a ghoyter edge han the u's euent dytane

label, updau tz labels by u and the tweiqni 4 A

edae belwee n u and u respoctivad

3.63 APrlicati on of Paim's agoitim

Roe Verbcos Romainunq vexhCes 2lustation

bla18) e(-,a).dl-)
(a,6) (4.5

Siep! al-, -)

8tep2 b(a3)
3 a

clbD 4-e) e(a, 6)

i elbi) aCc,)el(a,6) 3(bA

3

Sep44b
d(f5) e(ba)

SiepS e) dl.5)

Slep d(f, 5)

Optimal Sluhon MST

w (T) =
8tltht+2t5

= ls

3 6
+Pho CDTYeCHnoss Pim Algailhm

Theoe m
Paims algithm

yields a minimum spannrg Rae auag

Paof
tG (v.E) be a cueahlid

Conrech q'ph. at T be

the edae set hat s qroon
t Pim's algovtthm.

The pAoais

ehges n T and using tho MST emma

mahemati ca) induch6n
m The num

To Cons ss a Bingle veaax and he must be

minumu m 8pannin iee

Basis a part

Cuny

Snd ucheym stp
Ri = CY, u) - minumum eRgt edge om a vertex

to a Venkex not tn T wsed b Prm's atBm

expamd T, Ti
Cannot belong any M6 un cluding T.

e add e; to T a ele aut le oed
Comecinesa Pso hims algon thm

In addition to dgee ei -(v, u), tus cyela must Contain

Guno Thar Lae tv', u) connscting a veatez v e Ti- b aa Gumo th

Voten u whih not t -1

deletion eAgc (v,u), osbtaun anothe 8paning aa

the entue tap

tlen, 1hu spanning hee s a minimum Apann gee

tloco chiuien u Pim's algotthm
- dapends m the daa skuclunas ehesen des tha

ap s.an he poToor eu h he set" V-V

ane the estarceg to he neaust ec
Vebas hose Vesex

aight mett*_prioriy ue >
he aunning hme =elvr)

v- iterabors, IKz anas

implemandng e pmiong quaua aveed o nd and
* On cach b tla

dolete the iumum
men hap

POloty_ queL wlk
bina wich

A A min haa a tompuu bunay e t wtich

vei elkmnî us les han on equal
k ehldaen

Ollog n)paahms . Delehom iath m

daCenc nkid hd � Pmory 9aua fman haap)

ol IE) Aog vl)
Runng hme

BL5 Analysú
Pim's alger Th m

Runmna bme 6

)-)+ IE O
tna ConneiliA 2aph; v-))E)

-1 3)

5

(6
3

A)
12 A

7

8.1. 3.7) KRUsKAL'S ALGORITHM

Kskal's algoritkm loeKs at a minimum

a tRihlid comeelid gaph G: (V, E) dus an anelic subaaph

with lv -) adges er ich the sum the weiqats

ng iae

2

the smallust
The algilin Censhuets Minmu m Spanning kae as an

cxpanding Saaucre Subgraphs, which &e alwag

acyeue but au not neceu auly Connsc lid on i tnliunaliai

8toqes elgenthm

9eps

)The algo beguv by Sn tng the aphs ges n

ntndiuasng eriiu Thi wegAts

)

0

n) Then, Strng wt he en Subgaph

) eans The en lid uit addng the next asge n the Liat

to The uuunt Aubgraph
Suth an tnclusi m does not

uai a tyls and Aimp skppng edge elkeu

3.7. Peudoxode
ALeORITHM kruskal(G)

k uskal's algo1im fer centcb
MST

Input A waghu Connec lid raph G-(v,

/Output ET, the set cdge comesi
a MST f9

Sont E n nonde cuaang oir the edap. weghb w wa)
T eccunli o
ko

eounl v-

kKt

e counii eceunla r

e buun ET

3.2.3

3.73 Apphtahon b kuskal's algentfm

llustsaton Ta des Sonzt ut edges

4 5

be a 6 ae t de be

STep
36 2 5 5 6

bc
a a cd de ab ab

3 4 L & 3
6

be ab b8 a dfa
S 5 6

cptimal Soluhonm

MST

Cor eetrnass kukal's algorf thm Aama as Pim's algott

Kzuskal's alaen hm has b ehack usha Ihn i adAition 4 Ik next

2de do ha edges aveady Seleelsd would Ceata a eye

cye is ahd and ony the naw edge eonat

we venices alead eonnecd by a path.

New Age tonechrg wo Veabes New 2
conn hng

wo

may Lak a yela
Veatices may not uak a qele

na 9 Singla ie , whch us a minimum Apanning
s inuha kingle Yeatax

On eaeh itexaion, hi algenthm làkas ha nakf eáge (u,v) pom

the Bonld ust tha qraph's esges nds the aes cmtai ning

urion fuvid algo lnm- theck whlkKen two Yeahces beleng
"h

Time biuienykus kal's agerthm o(IE))

KVAicas u and v
two Yoh ces beBoma

the

Anas:
Bame ee

algetthm

AlqeT loms
Durint 6bsets and Union- fnd Algertbm

*Rastules a dynamic parh bon 8ome
n-elemont At g

Colecion disjon %ubse Si,S2 . S

Afi bng initialk 2ad as a tolecbon

subielss, cach conlainivng a aent aumet 1 s, h cellecbon

vn nme- elemont

Bubjeeted b a Seguon e thlimixa unitn and fend4 operahons

openabions

i) makaset (x)- mala a melamant 8et 2x}

Conauning Ralns a 8ubset

Consliuuli the unin the dasjant Aukseli Se

ii)uniom 2,)
om Sy Cenlunng and y 7especbvel and

Colacki on to veplace Sx and Sq

laem t
adds t o

3.2.4 0/1 Knapsack Problem

• Given n objects and a knapsack or bag. Object i has a weight wi and the knapsack has a
capacity m. Object i is placed into the knapsack, then a profit is earned.

• The objective is to obtain a filling of the knapsack that maximizes the total profit earned.
• Since the knapsack capacity is m, it is required that the total weight of all chosen objects to

beat most m.
• Formally, the problem can be stated as

• The profits and weights are positive numbers.
• A feasible solution is any set (xi,.x..n,) satisfying the conditions.
• An optimal solution is a feasible solution for which the objective function is maximized.

Example:
• Use the following instances of the knapsack problem, find the subset for maximizing the

profit.
Knapsack capacity = 8

Items Weight Profit

1 1 15

2 5 10

3 3 9

4 4 5

Solution:
• Step 1:

Find Profit/Weight ratio

Items Weight Profit Profit/Weight

1 1 15 15

2 5 10 2

3 3 9 3

4 4 5 1.25

• Step 2:
Arrange in the descending order

Items Weight Profit Profit/Weight

1 1 15 15

3 3 9 3

2 5 10 2

4 4 5 1.25

➢ Select the item which has the maximum profit/weight ratio and the weight must be less than
or equal to the capacity of the knapsack

• Step 3:
Use Greedy Technique, find the optimal solution

✔ Take Item 1
weight of the item 1 = 1 ≤ 8

Add item 1 into knapsack
{1}
8-1 = 7 ------> Remaining need to fill

✔ Next, Take Item 3
weight of the item 3 = 3 ≤ 7

Add item 3 into knapsack
{1,3}
7-3 = 4 ------> need to fill

✔ Next, Take Item 2
weight of the item 2 = 5 ≠ 4

Can’t add item 2 into knapsack
{1,3}
7-3 = 4 ------> need to fill

✔ Next, Take Item 4
weight of the item 4 = 4 = 4

Add item 4 into knapsack
{1,3,4} i.e) {1,0,1,1} [1 – Included, 0 – Not included]
7-4 = 0 ------> knapsack is full

Answer:
Optimal Solution is {1,0,1,1}
 Profit = 29

Analysis:
Time complexity – O(n)

3.2.4 Optimal Merge Pattern
• Definition

◦ The problem is to merge a set of sorted files of different length into a single sorted file
with minimum time.

◦ This merge can be performed pair wise. Hence, this type of merging is called as 2- way
merge patterns.

• To merge a p-record file and a q-record file requires possibly p + q record moves, the
better choice is merge the two smallest files together at each step.

• Two-way merge patterns can be represented by binary merge trees.

• Consider a set of n sorted files {f1, f2, f3, …, fn}.
• Initially, each element of this is considered as a single node binary tree.

Algorithm: TREE (n)
for i := 1 to n – 1 do
declare new node
node.leftchild := least (list)
node.rightchild := least (list)
node.weight := ((node.leftchild).weight) + ((node.rightchild).weight)
insert (list, node);
return least (list);
At the end of this algorithm, the weight of the root node represents the optimal cost.

Example
• Consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of elements

respectively.

Solution 1:
• Merge operations are performed according to the provided sequence, then

M1 = merge f1 and f2 => 20 + 30 = 50
M2 = merge M1 and f3 => 50 + 10 = 60
M3 = merge M2 and f4 => 60 + 5 = 65
M4 = merge M3 and f5 => 65 + 30 = 95

• The total number of operations is 50 + 60 + 65 + 95 = 270

Solution 2:
• Sorting the numbers according to their size in an ascending order
• Sequence - f4, f3, f1, f2, f5
• Merge operations can be performed on this sequence

M1 = merge f4 and f3 => 5 + 10 = 15
M2 = merge M1 and f1 => 15 + 20 = 35
M3 = merge M2 and f2 => 35 + 30 = 65
M4 = merge M3 and f5 => 65 + 30 = 95

• The total number of operations is 15 + 35 + 65 + 95 = 210

Solution 3:

• The solution takes 15 + 35 + 60 + 95 = 205 number of comparisons
• This is Optimal Solution

Analysis:
• Time complexity = O(n log n)

(31)
Co nsiuell fo
encoda a given xt

JUFF MAN TREF

13 4. bn cha
iven t

xEncoding a text that CompsesSmbos form n-8ymbo

aphabel ba aManing
to each the 1ext % sqrmbobs

CoceuOTd .

8ome Sen uo nco bs
daludthe

Codowosd.

ixacd- lenh encoding stirg the

-asigns
to each s|nmbota

bt 5tnig

Samee lengh m (n 2 log, n)

- uent Aettes :e(
a (.-)

uent sttes 9 -)

Vatable -lengh_encodng

- assigns
Codewnds 3 iherent lengtia to eleent

Symb ovs

Problem how many b 3 am
2ncodoe text Tepresent the

astsm bot.

Ae p*-free tod es (Pt Celoas)

no Codeos d Can Simply ap a bt shinq

Canstouct a frea
that would assiqn shorl�r bitshmgs to hug

euan 84m boB and longea ones 16 fou-equen 8ymbots.

tluan algenthm

Step Inihalize n
one-node

Tecs and akel the

Snbe ha alphabet ven

Racsd the reauonc

to thdicale the tree 's weght.

and
abel them wi th t

heach
tmbol

cr s tree 's oott

Stepa Repect the hollouwng operation unhl a singe ce ts

obtanad
Ftnd fcolvees

oith tka 6mallest eqht

Make tAem the lefl an TqKt Su Bfvee a nao

ecerd Tio Sum 1 heu tuueighs en the root the

w hee as Uk uegLS.

3.2.6

41 ffman lue-A a tonbiulsa by tutlnan azor en

8.14
pl

Tho te 8ynbet alphebe } A,B.,D, -f win

lle wing eccuAenco tequentias n olett mada uy

4, the n bek

symbot AB D

l.25
2 0 o.15

lunan lee Co nstuc ticn)hange IKi cheaibs n ayssduua

th prcbe bilt

i) Cemhu rodes
er a hubbas A

basd
n prbabi k e

.35
A

(0A 35

A

o.5 2

.4

o.2
D

(0-25)
A o.2

Hu-pm an
Skp encode |h e

10 l4t branch 6hould b

Liqrvd w, o

*gnt brach heul4 be

o 35
o.25)

Pe
o. o.15

B

The Tesuling Code wede;

Bymbot|A B D

eauan4 |0.35 0.} 0,2 D. 0.1S

Lodo wo7 tt
100 00 O 0

DAD DAD 8s enco ded4

da codes a
BAD-AD

The Verage numbea bu pex symbot
n he Code

AXO3s+3

xo,|+2x 0. 2+a
xo.2+3x0.15

= 2.25

to wse at kast 3 biu þea Smb ot.

Tatto a standasd

en)h bx Prob

id length ancoding Miasue

man Code achieves CompregGion Talio a standasd

a Comession algoitlbm ctfcbivenau
3- 2.95 Xtoo / = a5 /

3

- luman eoding will use 25 less memoy
uu Than

ngth encoding

Simp liu e vens atiey
- opimal tntoding.

ady

du adv i the encoded
text to mak ts

to uhelude
M Coding table

3.9 oecoding pesi be

ynamie Huthnann enoung:
Vecoms the dundvantaqe

Codin e s updaled ach hme a new Symbt u

Tead orm tha Soutext

ompelZv alqoilhm aia Codo woyds not to tndiodual

ymbets bt to Atunar 1 4ynb
achie ves botfer ad mere Ttbut treus

tueghled peith lenqth
Sumtey Jew

A- -kngth 7, the path fem cot the at

de ikim hees ue drtisiGn Ges

n-4

es
(

(n)
(n>3
no

no e

numbea i u choten with probabil p, lFe u

S iP ength the path fem oot t te a

n4
and Pa0.l, P2 0.2, P= 0.3 and P0+

the munimum wigAli4 páth a i the ht mast nz n 7

Apphta hons

H man ncoding ues in Ccmpres algr h

Huthman's code is

ao dsd fen
wnd in na plag

used un tansmu ssion da

3

h
lleing dala

code
Comtruet a Hman

C 9 E
chaaocli A

Probab1li y o. . 0 2 0.ls 0.1S

text A BACA BA D

b)Decode l loxt whse encod: rg u
a)ncod \k

Consthuet Th hJhman ue and give lka htman

encoding Ihe dollo):
Va I 3 A5

equant 51 o S a

m an
encou ng o Th plowing ala

value b

euen S S 45

Hman ki s a buna e

wugalid palk lnath rom h Rcot
o kR leaves

hat

h leavesi

Con lanuna a st predand
wughk

h

wuga

*tThman
cede eheo dung

cheme
lhat a41gn b

basud

bt
2nto duna scheme

nan on lheu reguentus

stnas
Tchaua

eluis
bascd on

lhu treguen

ven xt
aYe ehasais

Os amd

bcd e g h

P a R S
R8 513 3

D 2 4

R3
2

13

UNIT-YL

ITERATIVE
IMPROVEMENT

The Simple Method ha Maximum Flo Problam -

Maxi murm Mate hing un B.partite Graphs - The Stable

Marn
Maimum

The Stable

Matehina
Pro blem

INTRoDUCTION

Tterate Improvemant Algotthm

algeithm sesign Technqua for Aolvng

ophmizatcn problems

Steps
Start wit a feasi ble seluti on

2. RLpeak ke ollowing &tap untl no impoyemant

Can be Tound

)ehanne t
Cuanent easible

galutitn & a

heasib le soluh'n
wit a

belE value
he

ejecbve funeio as optmal

3. RLun lk ast easible
souhm

as opkmaaR

ramps:

. Foad
Fulkaason

algomthm
or

maximum fuo

pro blem

.Simplax Mehod

A. Gale- ShaplaH
gothm

or le 8table mauia
3.

Maximum

matehing
77eph

Yaces

3

pro blem

THE SIMPLEX METHOD

Linear hoqi am min

- The general proble m oplimizing a linea funetim

Several Vamables Aubject t5 a set inea Cornstiaints

maumRA minimize) C, t + CnXn

functim
-The general

+Cn Xn

a, X -ajn X, e(or2cr =) b

Ti m
Kubjett E a;,

. Xn>0

s mathematiian G..Bantzig falky lineas Hogrammirg

invenlo of he Simpley ma ltod

Gleomenite Tnterpre ta tion of ineo hograrnning
undamenlal opotias h poblen

Ex
Anear Hogamming Poble m tn two Yatables.

maximze 3x+5y

2ty 4

X+ 36

ubject to

casi ble heas ble Kolution any point (x) azfas all the constraunts
the p7o blem

asible Tgion sei b allasble pcin t
The poink f e easible 1q1on muut shtist al th Constraint

the problem
task:

To fhd an opima| Soluhin, a point tn the easi ble 7alon

z3x45 with the lasgest Value the obechve uretion 34+5y

4.1

Soterahe Jmproe mon

lgot thm Frani ble n
teratve ImPoovemeríl

aloptth s ho algoallhm desa

1emuqu e solukaopth nizal

roble mma

gtart lh
ablo

2thuha

Ppent
Ihe Jolloi"gA sp unh)

ne impove mont an be fond.

(o,2)

tA0)
Boluhn to a feasnblo gol, hen

wiha bet luo t

oeb ve fu nhon

PeleTn las1 fta be Boluhon

as ophmal 3+5e 20
3x5ye lo 3x151Z

evel unes o atbjecbve une bon

Cop)

3tSy-20
ncasi ble > inoar Proreming po blems si empfcasibla

wokeasible
neasible problems de net have optmal 3oluhens

TeA are Ca lle

Example : oblem's teasible vion s unbaupdel
unauaubes t

+3y
easible egton toill be me unboundcd.

maxenue 2=32tH

extheme Points:

An optimal Folu lion to a une ar poqam mina prubk m ca

be ound at one b the etxenme poi nts b s feile regan

TME SIMPLEx MEtAD

naa Paeqrarmmu
Me lhd used fan k solu ion

Pro ble ms (PP)

neas hegsamming Paoblams
Runehon ts be

LPP Cons is a unear objeci ve

ma i miksd O mini mi zad bje ct tb atain Constraintg

Ke om nta equations
on Lh euau tes

eneral Toam

oa m inimizea) CX, t +(n n

Bu bje ct to i X,t. ..+áin
4lon or =)b:

pa t m

ma mLRe On r -)b

O, . n>o.

Porar oming rblem n so Vaiables
xample

naa

3t5 makima Ze

4 ubjed o

t

x2, zo

Daduee

Step 1 Set up IRe inihal Limplex tableau

Step a Detamtne he har he pttmal soluion has bean

Step a

aachad by examining all enti es in tke lst aou

aTall the enttu ae non naAaive, ka optimall

8 olutiom has bean nac had, Procead to tep 4

ngaive anhies, the

Kaeched, Prowae
b)T thave ase orne ox MoAL

opimal soluiom has not been

Btep3
Slep 3 Peaform Ih pivot operalion. K luan to stepa

Step Deliim unn IKe opima Seluim.

MarimiRe 3xt5
V

8ubjeet o 6
v

31-50o6

Soluh n :
pivet Column

Step
(en temg vana ble

Conyet tnto glandax om
addng

Maximu 2za 32t5ytoutoV

ckoosenA
a pivot

aow
(dapautina

vaiabl
lack Yanabes

Constan

Subjectb tyt u= 4
Pirot tolumn

V 2o ehoose minn mum Yaliw 1)

So Aepau bng vauable is V

Step 2 Simplex tablaau :
abi BFS CoTC4R

bo hi eYTeMapb V

, in ual
o

pvu6

T

bas | o4

yaiades v 1. 3 0o 6

pint
élement T

Pivoting

cb -3-5 val of zat (9e4) rom o

Cojicien ls obj. fr wit 8gn Tevease
Basie feasibla goluhn (0, 0, 4, 6)

makes pivot element value a i

-divide Tke pivot aasby Pi v

ekement
}=0

Thu table is nst opînmal.

ophmalutalt
Beuwne kz enhis n e objeative Aw

have negahve numba

Step3 tap3Next tteraio

1)-fend pivot column, þivot Raw,

Pivot element

35 o oo

Pivot tolumn- enlerinq vauable
Raplaung ohr ALos

pivot Aow- dapasbng vau ablu Row= Row C. Rew

egumi

pivet teumn n2moSt
Rotd 3 Rew3 - C Retu

n eetive value

ni ettive rcu C Constant pivot colam n

-5)- Row i = Rowl - 1. Rew
Ro 3 Ro 3 (-5. Row

ophmal st
Thu labe u phmak

Because all enhies

vlha cbjecbve Au

non nagabve

Row uv

-1(= o

3 o 3, -o)»

o-I(Y)--
4 2) = 2 -o 5/3 1

Vvaue ofo
Row3

The maximal

Thu table

optmality last
net ophmal -3--5).%= 4/3

-5-(-5).) = o

objesbveune 1

O-(-s) o o

O --5) Ya) = s|
-(-s).= lo

-) entmes - n2gative um

Bane aside scluicn (o, 3,3, o
* $lep4 Next Iteya tion Lineaa hqrammi na ro blam

-Yund pivet Column, pivt 7ou, pivot eamant

Pivot celumn

manimza 3t
Bubject to-ty <)

axty4
-1/3 (eatesing yaiable)

Pivet Aow:
20, j20

3

maximixe bet52

Bubjet to Kit 2 <5

3X+ 2 4 1
So. Tau dpauting raiat)

u v

nsing abular tom

pivot ett 13 m 27-3+ 4%
ubjt lo ax -3y+Z 3

2n+y-z 410

T
max, 2 -ytAz

abjut b hoc-39+Z3

- makes pivot elt to b I

o %- 3

Pivohing:Rplaung olhi adws
Row2

Rcw Row - Row= Ro w - Rou -V3 to) =
Vs() =-2 Row3= Row 3 - C. Rouoi = Row3-()P Ys-V3C-Y) = V2

Ru 3) 1

-V-/s)a) o

-(-4) (o) o

o 3

at (3,),0,o)

E Basi Tasibe scuhon3,1,0,)| z-14 --) (3) =

Dual 2oblem.
Pimal o blem

A insar rgranming oble m

maxi mi Ra

,rn b b fon 1,, Subject to

n

Cons deved as pumal, en Jdua dard

inca agamming roblum
m

Dal P>oblem
minimiRe

Subject to a 9: 9 to j =l,,

xanp proble
Wai Ie dual Problem as ce alkd wIKs Probk m

inimu a brtEy

Subjet t a0x tloy
Aoo

loxt 5y 2lo

5x+ ISy zISDo

Solu tion rebanm

Shep Wite doon a tableau for lhe pim ebam

Constant
2460

A

S

S S

8

Step 2'Inichange ke Celumns and deos k adau,

and head l thaee lumns h Acsulbire ali

wi I he Veuables u, v and w

adlau

Constant| w

AO 5 6

4D0 2166

Step8 Censidu he lableau as
nial impux ablaou,

eguau Om .e) Btan dad maximi Ra t n

Pkoble m

Dual Poblem
maximu Ra A

oOu+2oov+

ISdo w

8ubjeet
to Aou+

lov+5w <
out 15V +IS w 4

uv, w 20

Ox Nov/DEC doIS)

Delemune Detesmune k ual linear Tam o7 h ella.ing P

Mavimu Re 3a +b+c
ab

Subjeett a+ btc 43 3

a+btc 44
3at3b+bc4 6

3 3 64

a b,c 20

Soluo unimZa 3u+4vt6

Subjedt to 3|3 u+t3 w 3
3

u+v3 w
u+V +6w

uV, o20

ud Ik dual Ik anear Progamming problk m

maxim Ke

u bjeet ti xt*2 t*g 6

The ore xtreme Peint Tho enem)

*Ang inear Prqamrning pioblo m with a nonempty

bounded feas le ed has an ophmal soluhion,

An optmalAnlution (an aluwa be un4 an

exe nv pel o oblemaable °q1t
Sohe a problem by tompuling ha value of kz objechve

unchon at each exte me peint and Selechn9 he ona

wi lh he best value

Sinlex Methoe

Inspect only a small hechm ch h exlTeme points

the easible Augton beoe 1eachu ng n opBBmal one

SiepsJdea

i) Stari by ider

easible eqien

an extoema pmn he

)Then Chock ohelher one Car qet an impoved alue

The objechive unction b ng tb an adjacen t

Extieme point
in) 1f ut s nst ha Cse, The urrext pet u optimal,

adja corit extreme

T it s Tha lase, poCAad o an

Peint w h an impoved va lu the dbjechve parchon.

aa tin numbea b 3eps, alet Thm tei l

eilka nenth an xtveme point whee an ophmal

goluhon oceus c do lamne hat no optrnal Solu ho

ero

An oulun Thi Simple M6thod

1ask o tansla le Ik eomabrc des cuphom of le 8mplx

ne thed nfo algptthmu ally language alje bra
aPplyinplx mehöd, IKe poblem has v beaPP
presetod n a pocial -fm eala.1 tanedas. jon

The andar Tm has followina Teq uiremens

) It musl be a maximiza lio broblem

A the consthaimts must be tn ha om unoa

uai O wi lK nOn noga ive igAt- Rand Kide
to be non noqatve

A 1he Vata bles rm us be JequTed

qenaral linsa roqpamming oblem un slandard fom
-

TM Cons17aink &n unknontns h 2m) a

maximue (*, t .+Cn Xn

8ubjet to ai2,t+inn* bi , wtee bj 2o fr i=12,,

IZo ,XnPo

matrx notaioms

maximi Za Ca

Subject t An =b

ohere

Cn 2

an a A12
b A

amn. Lam m bm
Any linea o amming proble m can e hanssomred vnE

an eg Ya lent poblem tn sBandard om

objechve unci on
pooblem

muumu2a Teplata4 by valert

prDblam maumizing ha ama objective unction

C Teplacod y i
Consi1auints tnegual neplaecd by cn egu yalknt

eAuahom by adding a slack vana bli

tnesual bes
equauty: t 4

2t3y 2bJ ty+u = 4

eP
Slandard fom

maximi ze 3 159 +Out
OV

4
ubject ts tyt

u

+ tV 6

K,y, u,V 2o

ind I optimal ol u hion;

Then obBaun an opthma Solution to Problem.

ad i provides foT ideniitting ext p tints the

easble 1e
base olution

ncn baue toondinalis Set to Reo bolove solung t systero

basiic to ovdinalis olstained by soling tha qem

Rcwle tKe sysrem eonsraunT uahon

Basic feasi ble sol uhion (BFS)

all all the
CoOTdinales

abasi�
Solub n eu

C K n cgabve, te bas1c Bolution l&
Called a bas1e fasiba soluhi

a Seaies adacan

a basie fraside Soluhin

The simplex
methad peqreskes

tfrough
a Seates b adjacon

vauies 4 the objcehve

ex tre me Paints
wilhLHUaasing

Vauies 4 the objechve ucb

Each pant tan be reprejented by Simple x
tableau

-a table stoaing the unoainabnt

basi ecagi bla Aolu hoy comesping to he

exte me ponl

able has nm Aouvs
ad n+) tolumns

m aou the ta ble eonláin the Coefhiue nT a

Contiant equabon,
wth the last tolumn's eny contanim

he esuah on's *1gh- hand Ade.

- Loturm s ae 1abe tes by 4he mames te yaviea bles

A cws a
kabeled b the base

vauales

he Valuos ate t th lagt Column

Vauabdes

ast Aow a Simplax ableau s laled th

bjecbve ao
* sini haiaad by lhe Co itien k he obecbie tunctis

with Aei Sgn Aaveiseed

unehn al the inithal point

and the Valua Otha objribve

On Subsesuent itevaltons, the objective Row a ansome
Stuplex ablkdu

basu feas bla sauiu

CO,0,4,

O

base
Vata bes

cbebve Yatue xat (o, o, 1,6)
3 5

he obect ive aa used cheek ewhehev the cunant

abludu represent an optimal Solubm

-at does if all the enbtes h the efetbve An , excupt Ik

ne un lhe last Ceumn a non negaivee

h is net lase, , any he non nagaive entoies

n dicates a non bas1�Yaiable th at tan betoma basic

t t ext tablhau.

*The tableau s net opbmal

nagabye Yaluo n The
-Cotumn hde tan namse tho value

the objechve unchon 232r5ytoutev ah J

b nAsing th yalue b the * -Coorcinalk tha Cuuent bas c

feasi ble Aduion Co,0,4,6)

Compens ati
a" dase th by adjusing tRa values 4 th

banc yaMables u and v 8o that the new point u gutl feasible

whu uo

y cwhere V2o
Must be sahstus,

men 4,6

-tnUlease he Vale 1 x oo o l47 lhu lasa esl amount

Poble the poin) (4,0,o,3), an cdiacant to (o,0,4,6)

ereme point the hcasible regi On Z=12

abve Value n the -Coumn h abiethve Acw

we tan n(ao ase the Value b te obeche unch on by

ng the Valua the 9-Coondinat

ubal basii feasi ble soluli on 0,0,4,6)

his Roques

Cn the

shere u2o
+U 4

where Vo

means ,
mun

nuease lhe Valeo um o to , the larg est

amount ossi ble point (0, 3, 3, 0, anothur

ad atent to (0,O,4,5) exfyeme point wrth k=10

*hegabve enk es n lh obechve cow

selact he mesTnegabve
o

Theula qialds The largest
unaaase tn e dbjecbve

uncion's Yalue Pea unut change n a Yamable's vala.

how much

easibi l Cnsiiaints impose dieent
limi G om

each the Yaviabs

Enting Yamable> A nw basie Yauable

Fntn
Pivot Cekumn

(oumn n enlüing yanable

mak tha Pivot cotumm byt Pivot

deparhrg
Yamable

-basn yaviable to become he non basic n

next tabkau .

o get tv an edjacert exizeme pint wits a lavqen Valers tte

ebjechve funehn, neLs to th uase lh entesig Vaiable

by 1he lasgst amout posble

Chcostng a depashng vanabe
e each pesi ive enhy n tha pivot telumn

" Comput -a tio by div ding the Rouo's lost entr by

Tho enty n th pivt calumi

e -Aatios e

6y -2

The &ow with th Smattast 6-Aaio do tamines ha

de pahg vaua ble . ie) iable to be tome on ba3ic

Mark he aow the dapartbng Yasiabla, Calle Ihe

Piet Aow, by by and donoe t lew

* these ae no pesi be entes t he pivo cotumn, no
tfhese

-aatio Can be compu lid.

Steps ts hans form a uant ablaau to ta naxt na

tanstorTmation > piotbrg

trst, divide all He enties db e pvot kow by he pivot,

a ey h the Pivot Column, b obtaun eu

aowne
) The n Replace each d ohea ROUs, ncluding the

ebjechve anu by te dsenta
Aow C. iouw nss

c Row's enly tn pivt Column

AOw- 1. Aow

AOw 3-(-5). aow,
new

The sinLplex melkod ham fuoms ta bleau nt te

olowing tabloa

LA

2
3

basic feasi ble solu hen (o, 2, 2, 0) wi

Value the objec bveune hion, which s equal to lo

It not oplima

0,2,,o)
wib an tHueayd

Next teation
V

3 3

Boluhim (3,1,0,o)

baie
Jeasible

Solutim (3,1,0,o)

Tt s
ophima,all

the enbies n the objecbve 3ow a

nomnganve

* The
maximal

vaue "b he objecbve
ncion

s equal to H.

Summaa bhe
Stmplex

method

Step Inilializafim

Simplex mathod

xPresent
a aiven

inaa prog7arnm ng proble m n Slanar

Set up an inial a bleau twith nonneqa tive enbes

the gHl most coumn
and m olko

Compbing the mxm idanh by manix

mColu mns dofine he ase Yaia blus the inibed

and m olk
Coumns

inihal

basle 1easi ble olu hom

giep ophmalily list

Ihalu tha etes n the2 cbjetbve Aow non . ngabe.

stop
he tableau repreßeng an optimal Zolutiom

basie yana bles values a tn The GhtmesT (olumn

basie

Aemainsng, non bagie vanable's Yalua a zao3.

Slep indsng IKe eniurg Yaua be

Se lect a nagabe eny oon anona tha fust r

elomonts the objecbve aaw

Mark ik Colu mn to indilate h enteng vatable

and lh pivol
gumn.

step Tnding l dapaating Y uabla"

* Fon each pesibve enlay n tho pirot Column, calco)ate tha2

e-Aato by diuiding that Aows enky un aigi Rg mos

Coumn by enty cn the pivet olumn

Hund IK Aao wi th the 8malast -vaho

The aouo to tndi Cate h depatng yau able and th

maak

pirot Ao

Step 4 Toaming the naw
ableau

DiuiAa all tho enhtes tn the þivot ano by b enby t ths

Pivot column .

- Bubiact om each the olher Aous, indudina the

ebje cbve 2ow, le nao pí vot 2Du mut tipud by thc enby

the pivot otumn o the a

Raplace lhe label Ohe Pivol aouw by the vauable's

name the pivot totumn and qo back to step 1
nama step

AnalysLs

The number o operahon pea
liahan pa iliahan Olnm

Example roblem

The
Pro duuces tablas

Cannon H I furni ure Company Produt ces tobles

ho us ohabo

Each lable ta kes pw
hour

abo

renuires aund chairs.

pom he ca perny depastmeni Ea ch chair

3 hours °bcapenhy and 1 heu f fnishing Duing

he Cnient uweck, 2Ao hou Capentny ime aue

ayai lable and loo ho us inishing tine Eoch table

ehair

produtad gives a profit
$7o and ecch chai

a PLefit ¢s Howmant ny
chais

aand ables

should be made?

Tasles Chains Constroins

ResouTce

aapenthy Chr

Finishing (m)

Unit Phostt |$7o

Cbject ve unehon

Maximuze jox,+50 2

Constauns

A 9*2 240

2x t K2

Non-negaiviy Condu bion:

K, 2 20

PP Maximize 1o +502

ubject to 1+3X224}0

2R +X2 £loo

sin 8implex mettod Sove

Std femn
* ini hal BS

*Sniial Simplex table

Finding ophrna o luion .

$4100

Example and plans b

A fammer
ows

a oo ace am
and Plas T

plant at
mostTAyee Aps.

he Seod Jor op

A B and C eess 4, 20, and 30 per
acve vespechvely.

fam
Bead for A

CLCe

The
Ovops

30 peT
acre

espechvel

Àmaximum

3200 can be 8pent on 8eod. Coops A, B

and e eguire I,2 and
wortdau pea

ala,Te>pecively,

woTkays evailable

on 8ed. Goops A,B

and theye ase maxímum
16o UTkays

civailable

i theavmer
ean maka a poft b 4oo per

aere

and $ 2oo peraere

aere

the

on op A, 300 pes acTe on aop B and aoo per ae

on Caop , homan
as

each Clop 8ho uld

lanlad to maximize Pk®fUb

aTney on Cop B

aLs each np
3he ulA be

THE MAXIMUM FLOW PROBLE M

e i2ing
*mauizing Thelow a mateial Th7ouah a1iansportation

netwon

FD Na
aanspoatahon

nehooak can be Aopresenl�d by a connoclsc

numbeaud fromn
5n and a

Deighted dtgiaph wi n Yea hes numbeed fom 15n and a

Propeabies

Se edges E. wb The eloing popeaties

Conlai ns exactly on2 Yenl�K wib no etertng edges

and asumad to be

Thus veatex is Coallod Souito2

mumbeed
edqes '

Conlauns exactty one yertex twit5 no lea ving

Ths yeater ig calod he 8ink and asumad to be

numbered n

1) The weigit u: h each daad edge (4j) u a

PoSihve in ge, Ca lled the ekae Capau

loo natoenk A Aiqraph salisttng ha paoperbiea

Metuooak qraph

Yukex numbea-names

edae numbtu- LAqe

Copahs

a) o
A low can be adiiaclid witbout Cosumung

amout bthe matexial

dolal amóunt ha mateial enteving an inlimediata

adding an

ouw-Conseavabom AvduukemanE

Vealox must be equal to the tolal amount eb tbe matental

lcaU the Vealx.

amount sent Thioug cdgel1)
ow-Conservauom unuement ean be ex pæsse by equal y

Constunt
oa t3, 3,n-j

:j,ide J:j)eE

4.2

Sums n lh laE and aPt hand Sides eepre the

total itouo and oulfloo entertng and lea Lina

Veat t, kes pet hvely
Tho tdal amoent of t matorta| leaving the 8burce must

en up at the 8th k

in
j:(vj)eE J:.eE

Valu of he low: bläl outftow fory Ihe 8auta

otal tn tlow tintd ha nk.

deno l�d by v

manem 22 ovea al Þosible loss n a neuosk

an asignment Tea numbe2s Kii edge l)

a a qiven
natworthat salis D TD- Casenvabiom

Constrainls and Capat Constvai nb

o 4i j

Maximum- flow pAoblem :

8tated as optimzation Poblem "

nmiza V=

j:Cj)eE
Xt=o for t=2,3n-Rubect t

j:ej)ee J: j,i)eE

oi; U; trevesy eage (j) eE

Fond -
Fulkis en

Mtd-

Jdea pteyaive mpoveme nt Augmenting -Path Mettod

)Alwa start wih IKa Xeuo ftow

set Xo
i) Then, on each natiom, toy to -fehd a prth pon

) Alwa

om

pah u (allacdlouw augmanhing

) 96a hlo- auqmentng path sound adjust ha

low alomg le esges the paK o gae a loo

m Aniaaased Vaue and Ry otnd an auqmentna

Path for tha no0 lo

iv) noo lowauqmentinq Path
an be jount, lka aent

owis epimal

xample Step)Zono Ho o
) Pas

in)flouw

VDPals

XoRo fto oA

o2 o5 /2

iteain

7

Tao amounla Sert Though
each edge ae sepanalkd

vom tho ege Capaaies by the slashes

Step
Seaich fer a low.

augmentingpalh
1om

Aoue to sink

by following
duèclad edges lij) or wkich ki cuunant

tow i

om
ouice to 8ink

less than the ea capac- mis 2, 5, 2

- TAanti hy
the pmenbing PaTk 273-7b

An aease
he louo alona

the pat
a maumum

wti ch s the 8mallest
unused capace the edqGes

awu

N oo
snot ophMal

teralien2 mius,1,5,8.4
/6

step - The value cay be naased alomg lhe path -3

I4 3 5

along Ihe path -33 Á*

by un oali ng h low by eAqes

b
C4), l43) (, 5) and 56) and eeew asinq dk by | cn

adge la,3) 2/s becemus s s 35
Cbackwaud dg

VA

/
The mcnimal flouo IS 3

t is maximal.
To thd a ftow- auqmontng pa15 a ftow *, neeol fo Cansiela

patths om 3ouaCa to ih undealging unduclad aph

th ohich any two comsecuh ve Veabitas i ar ehe

)Conneclid by a dunedad edge tpom tojwth 8me

pesbve untused capacl =uizij

TOnuaid cAges

-

BackuaA edges Backun n) Conmeclas by a duaas cig. om j to

Pitveau *ji
josuand cdges ;

tJ.
backwaad cigea

it
4 >8 395>6

,4/3), (a,s Y onoud elges
S

C32) backuaad elge .

* Ter a ien fouo- augmon byg path,

A- minimum al the unused capau ies 7ii

omwond adges and aU the fos b

backuwaad esAes
DUease the Ceuant oo by n cm each orwaad eAge

dutiease tt by the amount m each backwaid edge.

-oßtasn a feasible ttow whose yalue 8a uruts giealis than

the valua predocoys07,

yi- nfeamad ale vatex dn a ftow augmenting Path
4 Potble Lembinabons towaad and backuwdelge

i i , ,

he necw flow ll 8alshy the Capaal Censt 7ain

*Adding a to io lrw Cm the tuvst esge bthe

Augment1ng pauh wlthUease tho value e tha low by
Path

tho ttov Value anAaases al least by 1 dn 2ach taa ion

btAe augmorin9 -path
mathod.

The augmonting - pa th mathod has o stop Jeaun tz numbe

The trial ow
aways

uma out to be marum al , irrespebive

ba squono o eugmening
paths

itaaioms
maimal, irreapetive

degradation auugmanurg-path mathod

olu Fpbicieny

ofu olu olu (4)
(c

(a
Utaqe posihive utg.

Augment the Zeao Tiow almg the path 1>?33>4

oblasn the How valle | ()

AAugmene that ttow along he pathI>x 324 wi tn aas e he

fo w
vlus to 2. (t)

Contrnua elachng the paù tlow
- uuga ni ng haths, ndad a

ow gno nh ng paths, ngad a

to tat h 2u itevations to veach the maumumo
valuo au (4)

Augmanbvg Tnibd Zorotow >254

A

Augmanbng neuw low along tho path |>3>4.

Shcntest- augmenirg-path
at stdabeled- ust scanned algosr tbm

USe beadt6 ust Aeaich tv genaale augmen birg paths uith

Hha Aoast numbea ee
aumnhng- path methoc

abe ling

maakong a nou yealar wi th tuo labelk.

ust ka bel amount oadAibonal hau tAat can be brought orn

Tha sauce to ke vealox beeng abelad

Senmd label name , tP2 VealQx fom uwtu ch tho Ventex

being abelzd wag iaehed

add f on -sign h tthe
Belond label

to thcicali whethea tAa vealix was Teachod

The 8oua te Lan be alwaus labelod t6 ,

fon the olher yahcos, Tha la bels a Conpules as holloro

oront

Yater i he baveasal 9uo by a dreclod edge
=u

om&lo j wib poSihve unused capacal Aj *uG*K,

-Th unla beled vea exi s onnoclad fo tha

Then vealäx s labeled wi t6 Aj,i', whaa

min Li, aii

unlabelad val i ü toneclid to the ront
vata i 3

the tvavesal ueue by a duocked edge onj b witt

peh be toto i then vealaei
abelrs eith

35 this labelinq- enhancad ta veasal ends up tabelng

Tho &ink, The culant ow can be auamen läd by The amaunt

hdial4 by the sipk% at Rabel

* Augmen labon ls peformad aln the augmantng Pah

tyacod y otlowing ne Yenlex detnd label rom

Shk lo 8ouia

- The cNent tlow quanhbes asu nlaased m tha

edges ha daeuased on Ma backuai

EXample.
edges b tus path.

theSnk
Yemauns unlabeled atin he iavesal

uCe betomes empy, The algoortbm chuuus tie

CLUe nt law a maumum and stoP%

max flouw -5

(tH Ha)
ug mantina paths -nwen exua nm

S-q-b-t
3--t -b

plica lin , the algoilhm to tRo nouen

tY7en to

old of3

ol6 2 0/s

o3 o
o13 ol

3,1 Ouew I 4 3 56
Augment the flow by a (tRe Aink3 first

kabel) alorg tha path ->>3
BSwd

el ol3
3 /2 1,5

,4t

o ol
3, 1+

Augment tha ftou by 1(the inks fist

abel) al ong the path
4>3->5>6

usue: 4 3 5 6

A

, I*

unlabellad),
the Cauent ftow u maxima

t)T3

No auqmanting patk (tfu Acnk u

Queue
1 1

GckITHM
Shovtest

Augmenling)a t6 (6) 3 emuinng l so) poss ble but 4-3 Tot posle

algon thm

Boulce , Anqle Snk n, and

/1nput
: A nutwenk twith Single

Soua I, Single Snk n, an

on ib eges (*)
pentventen

Capaatieg u on espes (*,)

Implements he hotest augmenbrg
path algon Thm

/ cutput A
mayimum z

dge (aJ) tn lhe ne huesk
a

Aabel he SouiCc twh r,
and a dd Th SouACe to TVe

empli ee

ohile nel Emply() do

AFsent
(Q); Dequtene (Q)

Ao /1enasd eges
ito vey edge om

�nla bel

imn
i, A labei jwith

nqtutue (@,

o eve edae m

d backuatd elges

unlab elod

muni eilab
t ,t

nqueue(a,

the sunk has ben laheled

Jn
ww E1

the &ec Jabel Yealex |

ese

i i the va ln uidtalid by ts Seland

Aabe
enase all Vatex labels excapt tie mes the So uce

eu i alize Q coth the Saute

Alutn

Netwonk Cud

A ut induted by pubbning Vahas a nokicok unlo

8ome u bset X Centasnung the Bouu and t Compument

x lemtai nu ng 1e Ank S 1he Set al! the edges wi th a tai

nx and a hoad tnR

donolsd hy C(Y,x)

x a, 3,4,5, 6f c(v, x) 15), (n

2,3,4,5 743
c (v,y)%.6), 5,)

X

*1.R,4} .5.4 (x, x)-9), (, s), 11,3)

2apateli 1a ut

*The capacaly
a cut C(xR

deneted e(x,)

Aofthed
as

theum

Capaibes
Tho dges

That

CxRdeneted e(x, *)

n-no bVea lis

Compose the cut
m-ne -ges

Ox Chaubes
ae qual to 5, b f1 5, b 1,

peth- (Xmm

Q(m)

Bmalest

iumum
Cut

Ct with the
mallst Cpa

Analysus:Time
etbiuenty

tho Sher last ugmenirg path algm = |0(nm)

Ihtoe Max to co Min- Cut
Thiorem

reiork Ls

maxtmum

ow , a

he
Value oha

maXimum

low un a
nek

minumum uut

Capacly b
ual b the

PacO Jut x
- heasi bla ow b Value v

netuonk.

tCCx, 7) - ut Capacity
e n Tha netuonk.

low
aesete

he cut
dohnad

as
Me

HeaanCe
belaeen

the sum
TAe Tows

on e edgu
ffom X to 3

Ros on the dges
bom

ho x

Sum the

v, the vale tAe iouw

Xji
ex,te xx V ex, j c

ic) VC

- ihe vaui t a Cannot excesd he copaa

w the nehwos K

any eT

X 0=< (X
tcxjex

uTeA P eg fe theorem

EAmond
MAxMUM MATCHIN N B1PARTITE GRAPHSs

Ropresent etemen tuoo iven Re by Veahtes aph,
th edges belioaen Veai ces that tan be paued.

matching

A malching a a qraph u a subset bedges th
tha propealy thatno tup edges hae a veala

maxumum malchana

a maxumum Caadinall� matchena

- ua matching wi th the laagest nmber)es

Bipatite qraph

maximum -matchunq problem
matcung n a

The pro blam n oirg a nmax

gnven aaph
Bolved by Jack

Edmands n 1965

Bipaahle aph:
-all the Veahcos Can be paah bone cnto too dujoint

sets V and , not nxassaul
ta &ame 8ine, 30

tha

eyey edge
conn

a
Yertex n one

Tha &ets o a Vater uD

to ota Set

A A qaph u bipaahtë
veahces

can be cotored n

oo codor& So ha eveau edge has ia veai ceg
Coloved tn

diherent Colors

eves
-Colorabla

Graphs are also sad tv be

* Iteratve -

impovement\technique

xhat M - matching t a biparhte aph G=(v, U, E) ors aph G=(v, U, E)

nd a mathng wTh move ekgeg

ery evey veatex i he v or U s matched (has a mala).

4.3

e) senves as an endpont an edge ui M, Au tan not

be dome and M a maximum matcung

*Te tmpove cLnan matchung, bolB Vand U mn ust contasn

unmalchad (frea) veahces ie) Yeabcas that aAO net

Lnudent lb any edg un M.

p

(
Ma (4,,6, 1){
Vaices I,a,3, b,7,10-foee

Vabces 4,5,8, 7 -matchad

^nuase a unent matchung by adding an edge belioan

- adding Ct6 totha matthing M3 Ch6),(4,), (5,1) tuo eeYeb es Stp2

Augrnenirg pah: L6

nda matching lages han M by mateching Yeatex

- an cdude the edag la, 6) tn a neuo matchng

Yaq uives emoval 4 Cl6) Step 3
-n cluson) in the nw matching.

M, t), (2.6), (4.6),6
Augmaning þath: ,6,,7

(0)

aase tha Sine a
ment matching by Consducbng a

Simple path Tom a rec veater th V b a free Yeatex th U whose

adges aK alteanately un £-M and th M

*Iha ust edgg the path dos not belong to M, the Aecnd dmi

Aoos and 8o on, unhl the last edge. that does nat belng to M.

- a path u catta4 augmenbin9 with vespect to the malching M

Palk fom a fjea Vate v6 a

eyeatex adding Augmentah on
X Since the denqth dh an augrianti ng path is alwaus odd, addinq

fo the malching M the path s edges n The odd -numbeed Posib oNs

and dalehng {om it the palh's eclges un tho even-numbeied pebon

els a mat ching wrihon moe edge than n y

$uch a matchinq ad us tment clled augmontab on

3,8,4,1,5,0 L an Qugmn hng peith hs the malching Me

T adding to Me tho edaes (3,8).(4,4) and (5, 1o) an4

dslub ng (4,e) and (5.9)
obtoun the matching Ma - fciD,(2,6), (s,8), c4,1),61)

Step 4 Maxtmum Matc hinq

3 Augmanting path: 3, 8,4,9, 5,1o

The matching Ma no1 only a manimum matching but ako

Pexyet
ie) matehing hat matches al ho veabcas the Toph

Thaorem A matching M a ma?ümum matchi and ony
thee eriti mo aug monbg path wr espect b M.

an augmaming palh with respect to matching M axu,

then the Ainge the matching can be thdeased bcgmanatim
xo aug menbng path with eapect t5 a ma tchin g M exisb,

then the matching a maimum matchi ng.
M- maximum malchin9 n

M*IM)
MOM= (M- M*)U (M1-M)

Genwal Method r conshucbng a maximurm maihing
8tart wih Some iniia) matching

-Find an augmonhng pah

- augment the auryent natchi ng along the poith

- When no augmonina path an be found, liaminata tho algontim
re barn the Rast matching, wuch is maimum.

Specittt algothm:
- Boa'Yeh fer an augmoning pat6 foT a matching M by a

BP ike traversal the qaph.
- Btasts Simu ltanacusy at att tho fpee venticas n me the
Ats V and y

auqmonbg_path.

exis, ú an odd-langth path that donnoch a r veaar re Veaa

tn V with a reo Yealox tn U and which, unlos t onsist

a snle edge zigs" jnm a ven lix un V to anothe

yatx mate un U, then 2ag
"

back b v along the uniqualy

dahunad edge om M and Ao on unt a7 ven tex n U

Yeac hed

Ruls hor labelui nq veabos duing tho Br- uke toavensal tho qaph.

Case 1 (the ueug4 hront veal�x w un v)

- u is a free veatex adjoont to w, t e used au the olher as the olher

endpoint an auqmonbng path B0the la balinq s topg and

ag mentabon g the matching
ommences ommenCes

- u s not hre and tonne lid to w by an edge hot Un M,

Aabl u with w unley t has bean, alwady labelad alneasy labelad

Case
(the Kaont ventex w s h u)

Rabel
mate th V u th w

- w must be
matched

and
label i mate th V w th

Pseudocode

ALGORITHM

Maimum Bipa ite Matching (G)

Fnd a
maximum

matchinq
u a biparhlà 9raph y

aBFS-uke

ravesal

Tnput: A biparb 97aph G- (V,0, E)

Output
A

maximum
- candinalla

matching
M tn the nput eraph

Ani baliza 8et M h edges
wth Some yald matchinq

inihai2 queue CQ with all tha ree Veabi ces V

whule not Empty (O) do

wk- FAont (@) Dequoue (a)

tu V edjaant to w do

on eve
Vealox u

M-M U w,uf

VAW
wbile v labeled do

U vetex thcl Calicd by V lab el

M M - (v, u)

V Vealkx ndicalid by Lu's JabelL

MM u(V,u)
meve oll vealox labcls

Ainbabze n uuh al hyee Vea bes tn V

break
else

(w ,u) M and
unlabeled

Jabel u with w

nqueue(Q,u)

else
Jabel the mate v w tui th w

ng ucue (R, V)

Ae liin M

Appli cahon h the alqon th
CumenE Matchng &inihali2aduOLLe

Vealx abeunq encyalad by the alyonthm

Oueue I3
uue 2 3

Augment omb

5

uue 3 auu 8 6 8 4

Augment fom 7

4

uwe 868 41

Augment hom lo

Vueue .emphj = maximum matchùng

Aralysis = Time ethueney the algortro u inO(n (ntm))

THE STABLE MARRIAGE PROBLEM
Veasim bipayti matching callod the stable mamage problom

and Considea a set Y mi,ma ", mn b n mart

Set X= wi,wa wn b n uwomen

Fach man has a prefexanca it ondaving tho wonmen es potenhal

mamage pautnovs with no hes allowod.mama
Atach wom an hay a prereneo st 4 the mon also with no ies.

the tale mamage problcm Dala fo an inslante

Wemen'sefeyence3 YanKig mabx
men's pe en ces

31 Ist 2hd 1 2nd 37d Ann ea Sue
Bob 2:3 2
Jim 3, [La 2,1

Tom

Bob aa Ann 3,3 Sue Ann Tim Tom Bob

Jim Loa Sue Aan ea Tom Bob Jim

Ann Jim Tom Bob 3,2 2,1 D2
Su ea Sue

Tom

fst posihon Poi bion 3 w

the ms prefare ust
pau 8,1

Second >posihon m ta
w's Prearena uat

Mamage matching M geloclad om
ua8et n (m,w) paius whose mem bers ase selecid hom

dusjnnt
n-elementsb y and x h a Ona

e) eaeh man m om u

Ona-one fasnuon

paiyed wi5 exactuy one uoman

om X and VI Ce VeNsa

Blocking: Pa
Apair (m,u) , whare meY, we X, AS Baid to be a

blockina pa o a marmaA Matching M man m and

ae not matchad tn M but thaH pree each

Woman w

othen to theui males h M.

ex (Bob, lea) - blockng pais

- Bob prefeas lea to Ann

lea pre Bab To Jm

Stable
A maTiage nmatching MS Calla stable i thare LS no

blocking pau jor it
blockng pai tr t unst ahe

4.4

Sla ble mamage probla m
-to hind a sla blo mar1ag matchung non's a

oomon's peeunco

Stabl Mamiage Algntlhm

Input A Sct n men and a sel 1 n
tdomon along w

A Set b

Aanking% tAa
uomorn by each man and Tankings

ith no tes allowed in he

Tho mon by each woman wi th no ttes

Aankings

Output: A slablo mamiag malching

Step 0 S1ani uilh atl the nmen and w0nen bei ng

Step 1 Nhile heve au eo men, anbr7 aly 8eta ct ono of tho

Step 1
and

do The folles toing

Roposal

The Selec lad free man m piopeses To to, lhe. next

woman on his proeronce ist

Rogponse

P
G ee, 8he atcape Ihe proposal to be

matchcel with m

*ThShe is not free, 3he Compae
m Lw h hea

Cunrent matë.

che prees m to him, sha alcepls ms popa
-

makirg hea ormen mata yee;

otheawise, she simply Teiecs
m3 prop cs al,

Joating m a

Kte Retum ths set o n matehad Pars

Apphabon the Stable manage Ao tm

Step Ann ea Sue

Bob 29 33

Jim 3

Bob Propried to Jo

lea ctecapled
FR mLN

3
Bob, Jim Tom

Tom
3,2 2,1 2

Step a Sue Ann lea

2/3 2 33 Bob Jim proposect to ler

reo men Loa Tee c läcd. 2

Jim 31

Tim, Tom 21 2
Tom 32

steps Ann lea Su

Jim popeSed to Su.

Su ae eoplid
rea man Bob 213 2 33

Jim, Tom Jim 3,) 3 2]

Tom 3,2 2 2

Step
Ann lea ue

b 213 2 33
Tom poposed to Sue

re man

Sue Teje clicd
Tom Tim 3, 13 2

Tom 3,2 2 22

Step 5.
Ann lea Sue

Tom Propoted lo Jea

a Tep la cod Bb witb Tom
PRoo men Bob a13 2 33

om Jim 31 3 2,]

Tom 3,2 2 2

Step 6 Ann lea Sue Bob preposed To Ann

aoo marn: Bob 23 l2 3.3 Ann acceplád
Jim

Bob
Tom 3,2 2,1 2

Bob- A nn
Jtm -Sue boxo tol aeeoplic propoia

undulined all rejeclid proposal. Tom koa

PAopex bes the 8table matage probem:

Thae m Thesla ble marage alqotthm feami nates a4i no

more h an iterabons wi 6 a slabla marota outrt
moe

DThe algothm 3fas uoth n men hav ng the total a

women on ihaa nankina Lsk

On each tetahon, ona man nmakes a proposal to a

OmAN

The algorthm must 8top ale move Thanr teabens

Peove the ena malchng M u a skHa mariage mae

nstable bloc kung pall
man m and a woman w ,w

unmatchad th M.

iterahom
m must have propesed l5 w bm som2 texahon

Lwha wr w Aofused m's prupoal c acaplad Lt

um m a subBe9ueM teIah On wiyer

but Aplacod
hiqtur-yankad match, w'a mala th Mm 0must e hugha

Analys Time Compii o(n))
on w's pretese Nco est han rm

num bu on ov
women

Ahadvantae
cvOTA mens Peon cag ovea wosen prferanos

man

The algai thm aluoass ye ald man -op bimal 4

gende -oph ma stable matchiga

Men's Peference Men's Pdererce Woman's Pr
Joman's

34 A PE 3
AB

8PT S P A
BDA

D

e S
BA clb

Maximum Mtchap
Men's Pteu womns P

A W C D A
W Y Z

tA nie 8 A

(T {launch lay DLY
MaxLmum -to

(Penc Shir

A b Supu modey

) D
R 3 213 3,2 43

3

4) 34 22

33 4) |22

	2.1.1 Computing an
	2.1.2 String Matching
	Analysis:
	2.1.3 Closest-Pair Problem Definition
	Example
	After all the steps, a sorted array is.
	Analysis:
	5d4269ed9284f4ee6bf53d87dcff22907d7465fe868e22897e48d79838b132c5.pdf
	5d4269ed9284f4ee6bf53d87dcff22907d7465fe868e22897e48d79838b132c5.pdf
	5d4269ed9284f4ee6bf53d87dcff22907d7465fe868e22897e48d79838b132c5.pdf
	5d4269ed9284f4ee6bf53d87dcff22907d7465fe868e22897e48d79838b132c5.pdf

