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UNIT-1
INTRODUCTION

Notion  of  an  Algorithm –  Fundamentals  of  Algorithmic  Problem Solving  –  Important  Problem Types  –
Fundamentals  of  the  Analysis  of  Algorithmic  Efficiency  –  Asymptotic  Notations  and  their  properties.  Analysis
Framework – Empirical analysis - Mathematical analysis for Recursive and Non-recursive algorithms – Visualization.

1.1 Notion of an Algorithm
1.1.1 Algorithm

• Algorithm is a sequence of unambiguous instructions for solving a problem  i.e) for obtaining a required
output for any legitimate input in a finite amount of time.

• Diagram: The notion of the Algorithm

1.1.2 Need for the analysis of Algorithms:
Example:  - computing the greatest common divisor of two integers:

        gcd(m,n) – defined as the largest integer that divides both  m and  n evenly.

Three methods for solving the same problem:
1. Euclid's Algorithm
2. Consecutive Integer Checking Algorithm
3. Middle School Procedure

Method 1:  Euclid's Algorithm
Step 1 : If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 2.
Step 2 : Divide m by n and assign the value of the remainder to r.
Step 3 : Assign the value of n to m and the value of r to n. Go to Step 1.

- based on applying repeatedly the equality
Example: 

gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

pseudocode:
ALGORITHM Euclid(m, n)
//Computes gcd(m, n) by Euclid’s algorithm
//Input: Two nonnegative, not-both-zero integers m and n
//Output: Greatest common divisor of m and n

while n ≠ 0 do
r ←m mod n
m←n
n←r

return m

    gcd(m,n) = gcd(n, m mod n)
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Method 2:  Consecutive Integer Checking Algorithm
Step 1:  Assign the value of min{m, n} to t. 
Step 2:  Divide m by t. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.
Step 3:  Divide n by t. If the remainder of this division is 0, return the value of t as the answer and stop; 
              otherwise, proceed to Step 4.
Step 4:  Decrease the value of t by 1. Go to Step 2.

-> more complex and slower than Euclid's Algorithm
Example:  gcd(60,24)
Step 1:    t = min{60,24} = 24 ; m=60 ; n=24
Step 2 :   Divide m by t;

Divide 60 by 24 ; remainder  ≠ 0 ; Decrease the value of 24 by 1 i.e) 23.
    Divide 60 by 23 ; remainder  ≠ 0 ; Decrease the value of 23 by 1 i.e) 22
    Divide 60 by 22 ; remainder  ≠ 0 ; Decrease the value of 22 by 1 i.e) 21
    Divide 60 by 21 ; remainder  ≠ 0 ; Decrease the value of 21 by 1 i.e) 20
   Divide 60 by 20 ; remainder  = 0 ;
now t=20

Step 3: Divide n by t;
Divide 24 by 20; remainder  ≠ 0 ; Decrease the value of 20 by 1 i.e) 19.

Divide m by t;
Divide 60 by 19; remainder  ≠ 0 ; Decrease the value of 19 by 1 i.e) 18.
Divide 60 by 18; remainder  ≠ 0 ; Decrease the value of 18 by 1 i.e) 17.
Divide 60 by 17; remainder  ≠ 0 ; Decrease the value of 17 by 1 i.e) 16.
Divide 60 by 16; remainder  ≠ 0 ; Decrease the value of 16 by 1 i.e) 15.
Divide 60 by 15; remainder  = 0 ; 

now t=15
Step 4: Divide n by t;

Divide 24 by 15; remainder  ≠ 0 ; Decrease the value of 15 by 1 i.e) 14.
Divide m by t;

Divide 60 by 14; remainder  ≠ 0 ; Decrease the value of 14 by 1 i.e) 13.
Divide 60 by 13; remainder  ≠ 0 ; Decrease the value of 13 by 1 i.e) 12.
Divide 60 by 12;  remainder  = 0 ;

Step 4: Divide n by t;
Divide 24 by 12;  remainder  = 0 ;

Step 5: Return the value of t as answer: t = 12; 
So gcd(60,24) = 12.

Method 3: Middle School Procedure .
Step 1: Find the prime factors of m.
Step 2: Find the prime factors of n.
Step 3: Identify all the common factors in the two prime expansions found in Step 1 and Step 2. 

(If p is a common factor occurring pm and pn times in m and n, respectively, it should be repeated min{pm, pn } times.) 
Step 4: Compute the product of all the common factors and return it as the greatest common divisor of the 
             numbers given.

Example:  gcd(60,24)
Step 1: the prime factors of  60 = 2 . 2 . 3 . 5
Step 2: the prime factors of  24 = 2 . 2 . 2 . 3
Step 3: Identify all the common factors : 2, 2, 3
Step 4: Compute the product of all the common factors and return;

gcd(60, 24) = 2 . 2 . 3 = 12.
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Finding Prime Numbers: (sieve of Eratosthenes)
• simple algorithm for generating consecutive primes not exceeding any given integer n > 1. 
• It was probably invented in ancient Greece and is known as the sieve of Eratosthenes
• Steps: 

◦ The algorithm starts by initializing a list of prime candidates with consecutive integers from 2 to n. 
◦ Then, on its first iteration, the algorithm eliminates from the list all multiples of 2, i.e., 4, 6, and so on. 
◦ Then it moves to the next item on the list, which is 3, and eliminates its multiples. 
◦ No pass for number 4 is needed: since 4 itself and all its multiples are also multiples of 2, they were

already eliminated on a previous pass. 
◦ The next remaining number on the list, which is used on the third pass, is 5.
◦ The algorithm continues in this fashion until no more numbers can be eliminated from the list. 
◦ The remaining integers of the list are the primes needed.

• Example: the algorithm to finding the list of primes not exceeding n = 25:

• The remaining numbers on the list are the consecutive primes less than or equal to 25.

ALGORITHM Sieve(n)
//Input: A positive integer n > 1
//Output: Array L of all prime numbers less than or equal to n
for p←2 to n do A[p]←p

for p←2 to √n
do 

if A[p] ≠ 0 //p hasn’t been eliminated on previous passes
j ← p  ∗ p

while j ≤ n do
A[j ]←0 //mark element as eliminated
j ←j + p
//copy the remaining elements of A to array L of the primes

i ←0
for p←2 to n do

if A[p] ≠ 0
L[i]←A[p]
i ←i + 1

return L

Example:
List the prime numbers not exceeding 10

Step 1: 2 3 4 5 6 7 8 9 10
Step 2: 2 3 5 7 9
Step 3: 2 3 5 7

Execution steps of the Algorithm:

Step 1:
[2] [3] [4] [5] [6] [7] [8] [9] [10]

A[P] =    2  3  4  5  6  7  8  9  10

for p ← 2 to √10  i.e) p ← 2 to 3 do
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Step 2:

p=2
if A[2] ≠ 0   ==>  2 ≠ 0  // Not eliminated
j = 2 x 2 = 4
while 4 ≤ 10 do

A[4] = 0 // eliminated and j=4+2= 6 i.e) ≤ 10
A[6] = 0 // eliminated and j=6+2= 8 i.e) ≤ 10
A[8] = 0 // eliminated and j=8+2= 10 i.e) ≤ 10
A[10] = 0 // eliminated and j=10+2= 12 i.e) ≥ 10

Hence comes out of while loop and increments “p”

Step 3:

p=3
if A[3] ≠ 0   ==>  3 ≠ 0  // Not eliminated
j = 3 x 3 = 9
while 9 ≤ 10 do

A[9] = 0 // eliminated and j=9+3= 12 i.e) ≥ 10
Hence comes out of while loop and increments “p”

• Now, After elimination, the array A contains only prime numbers which is copied to the array L.
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1.2. Fundamentals of Algorithmic problem solving

Algorithm Design and Analysis Process

1) Understand the problem:
• It is done by reading the problem statement thoroughly and ask questions for clarifying the doubts about the

problem.
• Find out what are the necessary inputs for solving the problem

2)  a) Ascertaining the capabilities of computational devices:
• It is necessary to ascertain (decide) the computational capabilities of devices on which the algorithm will be

running.
• From execution point of view algorithm

1. Sequential algorithm
2. Parallel algorithm

✔ Sequential algorithm - runs on a machine in which the instructions are executed one after another.
       Such a machine is called Random Acess Machine(RAM).
✔ Parallel algorithm – Algorithm that take advantage of operations that can be executed concurrently. i.e)

The  algorithm that  can  be  executed  simultaneously  on  many  different  processing  devices  and  then
combined together to get correct result.

• There are certain problems which require huge amount of memory or the problems for which execution time
is an important factor.

• For such problems it is essential to have a proper choice of a computational device which is space and time
efficient.

      
b) Choosing between exact and approximate problem solving:

• To decide whether the problems is to be solved exactly or approximately.
i) exact algorithm – solving the problem exactly
ii) approximation algorithm -   solving the problem approximately. 

                    Ex: Travelling salesman problem – finding shortest tour through n cities
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c) Deciding on Appropriate Data Structures:
• Data Structure is important for both design and analysis of algorithm
• Choice of proper data structure is required

• Data structure and algorithm work together and these are interdependent.
• Program is possible with the help of algorithm and data structure.

       d) Algorithm Design Techniques:
• Algorithm Design Technique is a general approach to solving problems algorithmically.
• They provide guidance for designing algorithms for new problems
• They are used to classify the algorithms based on the design idea.
• Algorithmic strategies also called as algorithmic techniques or algorithmic paradigm.

• Brute force
• Divide and conquer
• Dynamic programming
• Greedy Technique
• Back Tracking

3) Methods of specifying an Algorithm:
There are various ways for specifying an algorithm.

➢ Using Natural Language – Clear description of an algorithm
➢ Pseudo Code – mixture of natural language and programming language
➢ Flow Chart – diagramatic representation of an algorithm

4) Proving an Algorithm's correctness:
• to prove the correctness of the algorithm. i.e) to prove that the algorithm yields a required result for
every legitimate input in a finite amount of time.
• The common technique is to use mathematical induction ( 2 Steps)
• If the algorithm is found to be incorrect, it is needed to redesign regarding tha data structures, the
design techniques and so on.

5) Analyzing an Algorithm:
• The following factors should be considerd while analysing an algorithm
✔ Time efficiency       -         Speed (how fast the algorithm runs)
✔ Space efficieny        -         memory (howmuch memory the algorithm needs)
✔ Simplicity                -         easy to understand
✔ Generality                -         which range of input is accepted

6) Coding an Algorithm:
• Programming an algorithm
• transition from an algorithm to a program
• Test and debug the program

Algorithms + Data Structures = Programs
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1.3.  Important Problem Types

1.   Sorting
2. Searching
3. String processing
4. Graph problems
5. Combinatorial problems
6. Geometric problems
7. Numerical problems

1) Sorting:
• Rearranging the items of a given list in ascending order
• key – chosen piece of information to sort
• Example: For student records, the key is the alphabets (Name)

• Properties:  

i) stable – preserves the relative order of any two equal elements in its input
  ii) in place – does not require extra memory

2) Searching:
• finding a value (search key) in a given list of elements
• two types:

1. Sequential Search
2. Binary Search

3) String processing:
• String – a sequence of characters
• Types:

1. text string – comprises letters, numbers and special characters
2. bit string – comprises zeros and ones
3. gene sequence – strings of characters of {A,C,G,T}

• String Matching – Searching for a given word in a text

4) Graph problems:
• Graph – collection of points(vertices) are connected by line segments(edges)
• used for modeling a variety of real-life applications
• Basic Graph Algorithms:

1. Graph Traversal Algorithm (visiting all the points in a network)
2. Shortest path Algorithm (Finding best route between two cities)

   3. Topological sorting for graphs (Ordering the vertices)
• Example:  

◦ Traveling salesman problems (finding shortest tour through n cities)
◦ Graph coloring problem (Assigning smallest number of colors to vertices such that no two adjacent 

vertices are the same)

5) Combinatorial problems:
• finding a combinatorial objects
• i.e) computing permutations and combinations
• Ex:  

1. Travelling Salesman Problem
2. Graph Coloring Problem

• difficult problems because the number of combinatorial objects grows extremely fast with a problem's size. 
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• No known algorithms for solving the problems exactly in an acceptable amount of time
• Many problems are unsolvable problems

6) Geometric problems:
• deal with geometric objects such as points, lines, and polygons
• problems of constructing simple geometric shapes such as triangles, circles and so on.
• Ex:  

1. Closest Pair Problem – finding closest pair among n points
2. Convex Hull Problem – finding smallest convex polygon

7) Numerical problems:
• problems that involve mathematical objects of continuous nature.
• can be solved only approximately
• Ex:  

- Solving equations and systems of equations
- Computing definite integrals
- evaluating functions
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1.4. Fundamentals of the Analysis of Algorithmic Efficiency

Analysis of algorithm – investigation of an algorithm's efficiency with respect to two resources:
i) running time
ii) memory space

Efficiency – determined by measuring time and space, the algorithm uses for executing the program

Time Efficiency :
• how fast the algorithm runs
• The time taken by a program to complete its task depends on the number of steps in an algorithm

Two types:
Compilation time – time for compilation
Run Time – Execution time depends on the size of the algorithm

Space Efficiency :
• The number of units the algorithm requires for memory storage

1.4.1 Analysis framework:

Two kinds of Efficiency:
i) Time Efficiency
ii) Space Efficiency

General Framework:

i) Measuring an input's size
ii) Units for measuring Running Time
iii) Ordres of Growth
iv) Worst-case, Best-case and Average – case Efficiency
v) Recapitulation of the Analysis Framework

i) Measuring an input's size:

• Algorithms run longer on larger inputs
• parameter n – indicating the algorithm's input size (Ex: sorting, searching)

• Ex:
• i) problem of evaluating a polynomial p(x) = anxn + ... +a0 :

◦ input's size – polynomial's degree or number of coefficients
• ii) computing the product of two n-by-n matrices

◦ input's size – total number of elements N in the matrices
• Measuring size of the inputs by the number of bits in the n's binary representation:

• number of bits b;  b=լlog2n˩+1

• Ex:

n Log2n լLog2n˩ b

1 0.0000 0 1

9 3.1699 3 4

15 3.9069 3 4

ii) Units for measuring Running Time:
• use standard units of time measurement – seconds, milliseconds
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• count the number of times each of the algorithm's operation is executed
▪ identify the basic operation (most important operation)
▪ number of times the basic operation is executed

• Ex: i) For sorting algorithm, the basic operation is comparison
     ii) For matrix multiplication, the basic operation is multiplication

• Estimating the running time:
T(n) ≈ Cop C(n)

Cop – Basic operation's execution time
C(n) – number of times the Basic operation needs to be executed

• 10 times faster machine -  10 times faster
• Double the input – 4 times longer

• Ex:

iii) Orders of Growth:
• Measuring the performance of an algorithm in relation with input size.

• The function growing the slowest is the logarithmic function.
• the exponential function 2n and the factorial function n! grow so fast 

iv) Worst-case, Best-case and Average – case Efficiency
• Ex: Sequential Search

◦ searches for a given item (search key K) in a list of n elements by checking successive elements of the list
until either a match with the search key is found or the list is exhausted.

• ALGORITHM SequentialSearch(A[0..n − 1], K)
//Searches for a given value in a given array by sequential search
//Input: An array A[0..n − 1] and a search key K
//Output: The index of the first element in A that matches K
// or −1 if there are no matching elements
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• Worst-case Efficiency – The worst-case efficiency of an algorithm is its efficiency for the worst-case input of
size  n, which is an input (or inputs) of size  n  for which the algorithm runs the longest among all possible
inputs of that size.

• Best-case  Efficiency - The best-case efficiency of an algorithm is its efficiency for the best-case input of size
n, which is an input (or inputs) of size n for which the algorithm runs the fastest among all possible inputs of
that size.

• Average-case Efficiency – make some assumptions about possible inputs of size n
i) successful search- the probability of the first match occurring in the ith position of the list is p/n 
ii) unsuccessful search - the number of comparisons will be n with the probability (1− p).

• Successful search: p=1, The average number of key comparisons is n+ 1
2

• Unsuccessful search: p=0, The average number of key comparisons is n
• the average-case efficiency  cannot be obtained by taking the average of the worst-case and the best-case

efficiencies.

• Amortized efficiency:
◦ It applies not to a single run of an algorithm but rather to a sequence of operations performed on the same

data structure. 
◦ The total time for an entire sequence of  n such operations is always significantly better than the worst-

case efficiency of that single operation multiplied by n.

C worst (n) = n

C best (n) = 1

   i ←0
   while i < n and A[i] ≠ K do

i ←i + 1
   if i < n return i
   else return −1
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1.5 Asymptotic Notations and their properties

• To choose best algorithm, it is needed to check the efficiency of the algorithms
• The efficiency of an algorithm can be measured by computing time complexity of each algorithm
• Using asymptotic notations time complexity can be rated as

1. Fastest Possible
2. Slowest Possible
3. Average Time

• asymptotic notations:
◦ O  (Big – oh)
◦ Ω  (Big Omega)
◦ Θ  (Big - Theta)

• t(n) will be an algorithm’s running time  and 
• g(n) will be some simple function to compare the count with.

i) Big – oh Notation (Ο)
• Method of representing the upper bound of algorithm's running time

Definition: 
• A function t(n) is said to be in O(g(n)) denoted as t(n) ϵ O(g(n)), if t(n) is bounded above by some

constant multiple of g(n) for all large n i.e) if there exists some positive constant C and some non-
negative integer n0 such that

• Diagram

Ex: 
t(n) = 4n; g(n) = 5n

ii) Big Omega Notation (Ω)
• Method of representing the lower bound of algorithm's running time
• Describes the best case running time of algorithms

Definition:
• A function t(n) is said to be in Ω (g(n)) denoted as t(n) ϵ Ω(g(n)), if t(n) is bounded below by some

positive constant multiple of g(n) for all large n i.e) if there exists some positive constant C and some
non-negative integer n0, such that

t(n) ≥ Cg(n) for all n ≥ no

t(n) ≤ Cg(n) for all n ≥n
0
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• Diagram:

Ex:
t(n) = 5n; g(n) = 4n

iii) Big - Theta Notation - Θ:
• A function t(n) is said to be in  Θ(g(n)),denoted by t(n) ϵ Θ(g(n)), if t(n) is bounded both above and

below by some positive constant multiples of g(n) for all large n i.e) if there exists some positive
constants ‘C1’ and’ C2’ and some non-negative integer no such that

C2 g(n) ≤ t(n) ≤ C1g(n) for all n > n0

• Diagram:

Note:
Θ(g(n)) = o(g(n)) ∩ Ω(g(n))

Properties:

Useful Property involving the Asymptotic Notations
• Theorem: If t1(n)  O(g∈ 1(n)) and t2(n)  O(g∈ 2(n)), then t1(n) + t2(n)  O(max{g∈ 1(n), g2(n)}).
• Proof :

Let, four arbitrary real numbers a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 2 max{b1, b2}.
t1(n)  O(g∈ 1(n)),  t1(n) ≤ c1g1(n) for all n ≥ n1 and 
t2(n)  O(g∈ 2(n)), t2(n) ≤ c2g2(n) for all n ≥ n2.
Consider, c3 = max{c1, c2}; n ≥ max{n1, n2} 

t1(n)   +   t2(n) ≤ c1g1(n) + c2g2(n)
≤ c3g1(n) + c3g2(n) = c3[g1(n) + g2(n)]
≤ c3 2 max{g1(n), g2(n)}.

Hence, t1(n) + t2(n)  O(max{g∈ 1(n), g2(n)}), 
with the constants c and n0 required by the O definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively.
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• Ex:

t1(n) = 
1
2

n(n-1) , t2(n) = n-1

t1(n)   O(n∈ 2) , t2(n)  O(n) ;∈ i.e)   g1(n) = n2, g2(n) =  n
t1(n) + t2(n)  O(max{g∈ 1(n), g2(n)})

So, t1(n) + t2(n)  O(max{n∈ 2, n}) = O(n2)
Using Limits for Comparing Orders of Growth:

Three principal cases

L’Hospital’s rule :

Stirling’s formula:

EXAMPLE 1: Compare the orders of growth of  
1
2

n(n-1) and n2. 

• Limit is equal to a constant, the functions have the same order of growth or, symbolically,                                 

1
2

n(n-1)  ∈ Θ(n2).

EXAMPLE 2 Compare the orders of growth of log2 n and √n.

• limit is equal to zero, log2 n has a smaller order of growth than √ n. 
log2 n  O( √n).∈

EXAMPLE 3: Compare the orders of growth of n! and 2n

• n! and 2n have the larger order of growth
n!  Ω (2∈ n)

Properties of Big – oh:

1. If there are 2 functions t1(n) and t2(n), such that t1(n)  ∈O(g1(n)) and t2(n) ∈ O(g2(n)) then
t1(n) + t2(n) = O(max {g1(n), g2(n)})

2. t(n)  ∈O(t(n))
3. If there are 2 functions t1(n) and t2(n), such that t1(n) ∈O(g1(n)) and t2(n)∈O (g2(n)) then

t1(n)* t2(n) = O (g1(n)*g2(n))
4. If t(n) ∈O(g(n)) and g(n) ∈O(h(n)) then t(n) ∈O(h(n))
5. In a polynomial the highest power term dominates other terms i.e) maximum degree is considered

Eg: for 3n3+2n2+10
     Time complexity is O(n3)
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6. Any constant values leads to O(1) time complexity.   ie, if t(n) = c, then it belongs to O(1) time complexity
7. O(1) < O(log n)< O(n) < O(n2)< O(2n)
8. t(n) = Θ(g(n)) iff t(n) = O(g(n)) and t(n) = Ω(g(n))

• Basic efficiency classes  :

Class Name Comments

1 constant - Short of best-case efficiencies, 
- an algorithm’s running time typically goes to infinity when its input size grows 
infinitely large.

log n logarithmic - a result of cutting a problem’s size by a constant factor on each iteration of the 
algorithm  
- linear running time.

n linear - Algorithms that scan a list of size n 

n log 
n

linearithmic - Many divide-and-conquer algorithms in the average case

n2 quadratic - characterizes efficiency of algorithms with two embedded loops 
- example : n × n matrices

n3 cubic - characterizes efficiency of algorithms with three embedded loops

2n exponential - algorithms that generate all subsets of an n-element set

n! factorial - algorithms that generate all permutations of an n-element set.
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1.6 Empirical Analysis
• Some simple algorithms are very difficult to analyze with mathematical precision and certainty.
• The principal alternative to the mathematical analysis of an algorithm‘s efficiency is empirical 

analysis.
• Empirical analysis of an algorithm is performed by running a program implementing the algorithm

on a sample of inputs and analyzing the data observed.

General Plan for the Empirical Analysis of Algorithm Time Efficiency
1. Understand the experiment’s purpose.
2. Decide on the efficiency metric M to be measured and the measurement unit (an operation count vs. a time 

unit).
3. Decide on characteristics of the input sample (its range, size, and so on).
4. Prepare a program implementing the algorithm (or algorithms) for the experimentation.
5. Generate a sample of inputs.
6. Run the algorithm (or algorithms) on the sample’s inputs and record the data observed.
7. Analyze the data obtained.

Goals   in analyzing algorithms empirically:   They include 
• checking the accuracy of a theoretical assertion about the algorithm’s efficiency, 

• comparing the efficiency of several algorithms for solving the same problem or different implementations of 
the same algorithm, 

• developing a hypothesis about the algorithm’s efficiency class, and 

• ascertaining the efficiency of the program implementing the algorithm on a particular machine.

How   the algorithm’s efficiency is to be measured:  
➢ The first alternative is to insert a counter (or counters) into a program implementing the algorithm to count the

number of times the algorithm’s basic operation is executed.

➢ The second alternative is to time the program implementing the algorithm in   question. 

➢ The easiest way to do this is to use a system’s command, such as the time command in UNIX. 

➢ Alternatively, one can measure the running time of a code fragment by asking for the system time right 
before the fragment’s start (tstart) and just after its completion (tfinish), and then computing the difference 
between the two   (t  finish−   t  start)

Profiling 
• measuring time spent on different segments of a program 

• Getting such data called profiling

• is an important resource in the empirical analysis of an algorithm’s running time; 

• the data in question can usually be obtained from the system tools available in most computing environments.

Decide on a sample of inputs:
• use a sample representing a “typical” input - a set of instances they use for benchmarking

• to make decisions about the sample size 

• and a procedure for generating instances in the range chosen.

Generating Pseudo Random Numbers:
• an empirical analysis requires generating random numbers.

• the problem can be solved only approximately 

• its output will be a value of a (pseudo)random variable uniformly distributed in the interval between 0 and

• Algorithms for generating (pseudo)random numbers linear congruential method

ALGORITHM Random(n, m, seed, a, b)
//Generates a sequence of n pseudorandom numbers according to the linear congruential method
//Input: A positive integer n and positive integer parameters m, seed, a, b
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//Output: A sequence r1, . . . , rn of n pseudorandom integers uniformly distributed among integer values between 0      
               //and m − 1
//Note: Pseudorandom numbers between 0 and 1 can be obtained by treating the integers generated as digits after the  
            //decimal point
r0←seed
for i ←1 to n do
ri←(a  ∗ ri−1 + b) mod m

✔ The empirical data obtained as the result of an experiment need to be recorded   and then presented for an 
analysis. 

✔ Data can be presented numerically in a table or graphically in a   scatterplot  , i.e., by points in a Cartesian   
coordinate system. 

✔ the form of a scatterplot may also help in ascertaining   the algorithm’s probable efficiency class. 

a) For a logarithmic algorithm, the scatterplot will have a concave shape

b) For a linear algorithm, the points will tend to aggregate around a straight line or, more generally, to be 
contained between two straight lines

c) Scatterplots of functions in (n lg n) and (n2) will have a convex shape making them difficult to 
differentiate

Typical scatter plots. (a) Logarithmic. (b) Linear. (c) One of the convex functions.

Applications of the empirical analysis 
◦ is to predict the algorithm’s performance on an instance not included in the experiment sample. 

◦ Extrapolation: Predicting the values of n outside the sample range. 

◦ Interpolation, which deals with values within the sample range.)

Basic differences between mathematical and empirical analyses of algorithms. 
• The principal strength of the mathematical analysis is its independence of specific inputs;

•  its principal weakness is its limited applicability, especially for investigating the average-case efficiency. 

• The principal strength of the empirical analysis lies in its applicability to any algorithm, 

• but its results can depend on the particular sample of instances and the computer used in the experiment.
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1.7 Mathematical analysis for Recursive and Non-recursive algorithms

1.7. 1. Mathematical Analysis for Recursive Algorithms
• Recursive Algorithm:  

◦ The same operation or function is executed a number of times to obtain the result
◦ Recurrence Equation: Equation that defines a sequence recursively

◦ T(n) = T(n-1) + n

• General Plan for Analyzing the Time Efficiency of Recursive Algorithms  
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation.
3. Check whether the number of times the basic operation is executed can vary on different inputs of the same

size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately.
4. Set up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation 

is executed.
5. Solve the recurrence or, at least, ascertain the order of growth of its solution

Examples:
1. Computing factorial for a number
2. Tower of Hanoi
3. Finding the number of digits

• Example 1: Computing factorial for a number
◦ Compute the factorial function F(n) = n! for an arbitrary nonnegative integer n. 

▪ n! = 1 . . . (n − 1) . n 
= (n − 1)! . n for n ≥ 1

       and 0!= 1  
• compute F(n) = F(n − 1) . n 

• ALGORITHM    F(n)
   //Computes n! recursively
   //Input: A nonnegative integer n
   //Output: The value of n!
   if n = 0 return 1
   else return F (n − 1)  n∗

• Ex: Compute 3!
Solution:

F(3) = F(3-1) * 3 = F(2) * 3
F(2) = F(2-1) * 2 = F(1) * 2
F(1) = F(1-1) * 1 = F(0) * 1
F(0) = 1

F(1) = 1 * 1 = 1
F(2) = 1 * 2 = 2
F(3) = 2 * 3 = 6

• Analysis:  
i) Measuring the input's size:

▪ input size - n
ii)  Basic operation:

▪ multiplication
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iii) the number of times the basic operation (Multiplication) is executed - M(n).
iv)  Recurrence relation:

1. M(n − 1) multiplications are spent to compute F (n − 1), and one more multiplication is needed to 
multiply the result by n.

2. M(n) is a function of n, but implicity as a function of its value at another point, n-1. Such equations 
are called recurrence relations or recurrences.
v) Solve the recurrence:

To solve the recurrences, an initial condition is needed.
If n= 0 return 1

 
                 Hence

The first is the factorial function F(n) itself,it is defined by the recurrence

• Solution:
✔ Method of backward substitution:

✔ Genaral Formula: M(n) = M(n-i) + i
✔ Mathematucal Induction: (Correctness of the formula)

Substitute i=n
          M(n) = M(n-n)+n
                   = M(0) +n = 0 + n
                   = n

✔ The time complexity of factorial function is Θ(n)

Example 2:   T  ower of Hanoi puzzle:  
• n disks of different sizes that can slide onto any of three pegs. 
• Initially, all the disks are on the first peg in order of size, the largest on the bottom and the smallest 

on top. 
• The goal is to move all the disks to the third peg, using the second one as an auxiliary, if necessary. 
• Only one disk can be moved at a time, and it is forbidden to place a larger disk on top of a smaller 

one.

• Steps:  
1. To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), 

• first move recursively n − 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), 
• then move the largest disk directly from peg 1 to peg 3, and, finally, 
• move recursively n − 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary)

2. if n = 1, simply move the single disk directly from the source peg to the destination peg.
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• ALGORITHM Hanoi( n,A,C,B)    // n – number of disks,  A – Peg 1, C – Peg 3, B – Peg 2  
if n==1

Move the disk from A to C
else

Hanoi( n-1,A,B,C)
Move the disk from A to C
Hanoi( n-1,B,C,A)

• Recursive solution:  

• Analysis:   
i)   Measuring the input's size: input size – n (number of disks)
ii)  Basic operation: moving one disk
iii) the number of times the basic operation (Moves) is executed - M(n).
iv)  Recurrence relation

• The number of moves M(n) depends on n only. The recurrence equation is

Initial condition: M(1) = 1
v) Solve the Recurrence Relation

Substitute i,
M(n) =  2i M(n-i) + 2 i-1 + 2 i-2 + ... + 2 + 1 

= 2i M(n-i) + 2 i -1
Initial condition is specified for n=1, for i = n-1,

• The order of growth is O(2n)

• Example 3: Counting The number of binary digits
◦ Finds the number of binary digits in the binary representation of a positive decimal integer.

•    ALGORITHM BinRec(n)
   //Input: A positive decimal integer n
   //Output: The number of binary digits in n’s binary representation
   if n = 1 return 1
   else return BinRec( n/2 ) + 1

• Analysis:  
i) Measuring the input's size: input size - n



CS 8451 – DESIGN AND ANALYSIS OF ALGORITHMS   (UNIT - 1)    21       

ii)  Basic operation: Addition
iii) the number of times the basic operation (Addition) is executed - A(n).
iv)  Recurrence relation

           Initial condition: A(1) =  0
v) Solve the Recurrence Relation

• let n= 2k, the order of growth for all values of n.

• backward substitutions

after returning to the original variable n = 2k and hence k = log2 n,

1.7.2 Mathematical Analysis of Nonrecursive Algorithms

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation. (As a rule, it is located in the innermost loop.)
3. Check whether the number of times the basic operation is executed,  depends only on the size of an input. If it

also  depends  on  some  additional  property,  the  worst-case,  average-case,  and,  if  necessary,  best-case
efficiencies have to be investigated separately.

4. Set up a sum, expressing the number of times the algorithm’s basic operation is executed.
5. Using standard formulas and rules of sum manipulation, either find a closed form formula for the count or, at

the very least, establish its order of growth.

i) Basic rules for Sum manipulation:

ii) Summation formulas
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Examples:
1. Finding largest element in a list of n numbers
2. Element Uniqueness Problem
3. Matrix Multiplication

Example 1:  Finding largest element:
• The problem of finding the value of the largest element in a list of n numbers. 

 ALGORITHM MaxElement(A[0..n − 1]) 
//Determines the value of the largest element in a given array 
//Input: An array A[0..n − 1] of real numbers
 //Output: The value of the largest element in A 

maxval ← A[0] 
for i ← 1 to n − 1 do 

if A[i] > maxval 
maxval ← A[i] 

return maxval 
• Ex: Determine the value of the largest element in an array

A={34, 65, 100, 67}
Illustration of example:

// MaxElementA[4] Determines the value of the largest element in a given array
//Input: An array A={34,65,100,67}

maxval ←34
for i ←1 to 3 do

if 65>34 // here i=1
maxval←65

if 100 >65 // here i=2
maxval ←100

if 100 >65 // here i=3 //end of elements in the list
return 100 

//Output : 100
• Analysis:  

i) Measuring the input's size:
• number of elements in the array, i.e., n

ii)  Basic operation:
• two operations :

- comparison
- assignment

• the comparison is executed on each repetition 
 iii) the number of comparisons: 
 C(n)  - The number of times the comparison is executed 

iv) Set up a sum expression: i.e) Find a formula expressing it as a function of size n. 
◦ The algorithm makes one comparison on each execution of the loop, which is repeated for each value of 

the loop’s variable i within the bounds 1 and n − 1
 C(n):

     
v) Find a closed form formula and establish its order of growth:
✔ sum to compute because it is nothing other than 1 repeated n – 1 times. 
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Example 2: Element Uniqueness Problem:
• Check whether all the elements in a given array of n elements are distinct.

• ALGORITHM UniqueElements(A[0..n − 1])
//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n − 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise

for i ←0 to n − 2 do
for j ←i + 1 to n − 1 do

if A[i]= A[j ] return false
return true

• Ex: A={54,78,56,2}
Illustration of example :

//UniqueElements(A[4])
//Input: An array A={54,78,56,2}
i ←0 do // the range of i is from 0 to 2
j← 1 do // the range of j is from 1 to 3

54!=78
j←2

54!=56
j←3

54!=2
i ←1 do

j←2
78!=56

j←3
78!=2

i ←2 do
j←3

56!=2
Return true

//Output: true. All the elements in the array are distinct.

• Analysis:  
i) Measuring the input's size:

• number of elements in the array, i.e., n
ii)  Basic operation:

• comparison
                    iii) the number of comparisons 

 C(n)  - The number of times the comparison is executed 
- depends on the number if elements and theirpositions 

iv) Find a formula expressing it as a function of size n.
Worst-case:

- the number of element comparisons is the largest among all arrays of size n.
two kinds of worst-case inputs:

i) arrays with no equal elements
ii) arrays in which the last two elements are the only pair of equal elements.

- one comparison is made for each repetition of the innermost loop, i.e., for each value of the loop
variable j between its limits i + 1 and n − 1;
- this is repeated for each value of the outer loop, i.e., for each value of the loop variable i between
its limits 0 and n − 2.
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v) Find a closed form formula and establish its order of growth:

Compute the sum:(Another Method)

• The algorithm needs to compare all  n(n-1)/2 distinct pairs of its n elements.

Example 3: Matrix Multiplication:
• Given two n × n matrices A and B, find the time efficiency of the definition-based algorithm for computing

their product C = AB. 
• By definition, C is an n × n matrix whose elements are computed as the scalar (dot) products of the rows of

matrix A and the columns of matrix B:

- where C[i, j ]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] for every pair of indices 0 ≤ i, j ≤ n − 1.
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• ALGORITHM MatrixMultiplication(A[0..n − 1, 0..n − 1], B[0..n − 1, 0..n − 1])
//Multiplies two square matrices of order n by the definition-based algorithm
//Input: Two n × n matrices A and B
//Output: Matrix C = AB

for i ←0 to n − 1 do
for j ←0 to n − 1 do

C[i, j ]←0.0
for k←0 to n − 1 do

C[i, j ]←C[i, j ]+ A[i, k]  ∗ B[k, j]
return C

• Example :
A[2][2]={1,2,4,6}
B[2][2]={6,7,8,9}

C[2][2]={22,25,72,82}
Illustration for example :
//Algorithm: Matrix multiplication (A[2][2], B[2][2])
//Multiplies two square matrices of order n.

//Input: A[2][2]={1,2,4,6} and B[2][2]={6,7,8,9}
for i ←0 //range of i={0,1}
for j ←0  //range of j={0,1}

C[0, 0 ]←0.0
for k←0 //range of k={0,1}

C[0, 0 ]←0+ 1*6 // A[0,0]=1 and B[0,0]=6
C[0,0] ←6

For k←1
C[0,0] ← 6+2*8 // A[0,1]=2 and B[1,0]=8
C[0,0] ←22

For j ←1
C[0,1 ]←0.0
for k←0

C[0, 1 ]←0+1*7 // A[0, 0]=1 and B[0,1]=7
C[0,1] ←7

For k ←1
C[0,1 ]←7+ 2*9 // A[0,1]=2 and B[1, 1]=9
C[0,1] ←18

For i ←1 for j ←0
C[1, 0 ]←0.0
for k←0

C[1, 0 ]←0+4*6 // A[1,0]=4 and B[0,0]=6
C[1,0] ←24

For k←1
C[1,0] ← 24+6*8 // A[1,1]=6 and B[1,0]=8
C[1,0] ←72

For j ←1
C[1,1 ]←0.0
for k←0

C[1, 1 ]←0+4*7 // A[1, 0]=4 and B[0,1]=7
C[0,1] ←28

For k ←1
C[1,1 ]←28+ 6*9 // A[1,1]=6 and B[1, 1]=9
C[0,1] ←82

//Output: Matrix C [2][2]={22,25,72,82}

• Analysis:  
i) Measuring the input's size:

• matrix order, i.e., n
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ii)  Basic operation:
 2 operations:

i) Multiplication
ii) Addition

• First consider, the basic operation is multiplication
                    iii) the total number of multiplications:

 M(n)  - The number of times the multiplication is executed 
iv) Set up a sum for the total number of multiplications M(n):
• one multiplication executed on each repetition of the algorithm’s innermost loop

• total number of multiplications M(n) is expressed by the following triple sum:

v) Find a closed form formula and establish its order of growth:
Compute the sum:

Estimate the running time of the algorithm:
• Total number of Multiplications M(n)=n3

cm  ------> Time of one multiplication
• Total number of Additions A(n)=n3

T(n)≈ca A(n)=  ca n3

ca  ------> Time of one addition
• Total Running Time:  

• Time complexity of Matrix Multiplication is Ɵ(n3)

Example 4: Counting the binary digits:
• Finds the number of binary digits in the binary representation of a positive decimal integer

• ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation

count ←1
while n > 1 do

count ←count + 1
n←n/2

return count
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• Analysis:  
• Measuring the input's size:  - input size is n
• Basic operation:
– most frequently executed operation is not inside the  while  loop but rather the comparison  n >  1 that

determines whether the loop’s  body will be executed.
– Since the number of times the comparison will be executed is larger than the number of repetitions of the

loop’s body by exactly 1.
- value n is halved on each repetition of the loop

• formula for the number of times  the comparison n>1 will be executed is actually log2 n + 1
• Time complexity for counting number of bits of given number is Ɵ(log2 n)
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1.8 Visualization
• Third way to study algorithms. 
• Algorithm visualization  -can  be  defined  as  the  use  of  images  to  convey  some useful  information  about

algorithms. 
• That information can be a visual illustration of an algorithm’s operation, of its performance on different kinds

of inputs, or of its execution speed versus that of other algorithms for the same problem. 
• To accomplish this goal, an algorithm visualization uses graphic elements—points, line segments, two- or

three-dimensional bars, and so on—to represent some “interesting events” in the algorithm’s operation.

Two principal variations of algorithm visualization:
 Static algorithm visualization
 Dynamic algorithm visualization, also called algorithm animation

➢ Static algorithm visualization shows an algorithm’s progress through a series of still images. 
➢ Algorithm animation,  on  the  other  hand,  shows a  continuous,  movie-like  presentation  of  an  algorithm’s

operations.

Initial and final screens of a typical visualization of a sorting algorithm using the bar representation

Initial and final screens of a typical visualization of a sorting algorithm using   the scatterplot representation.  

Two principal applications of algorithm visualization: 
1. Research and
2. Education.

• Potential benefits for researchers are based on expectations that algorithm  visualization may help uncover
some unknown features of algorithms.

• The application of algorithm visualization to education seeks to help students learning algorithms.
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UNIT II
BRUTE FORCE AND DIVIDE-AND-CONQUER

Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems - Exhaustive 
Search - Travelling Salesman Problem - Knapsack Problem - Assignment problem. Divide and Conquer
Methodology – Binary Search – Merge sort – Quick sort – Heap Sort - Multiplication of Large Integers 
– Closest-Pair and Convex - Hull Problems.

ALGORITHM CLASSIFICATION
 Algorithms that use a similar problem-solving approach can be grouped together. Some of

the famous algorithm types include:

 Backtracking algorithms

 Divide and conquer algorithms

 Dynamic programming algorithms

 Greedy algorithms

 Branch and bound algorithms

 Brute force algorithms

 Randomized algorithms

2.1 BRUTE FORCE ALGORITHMS
• Brute force is a straightforward approach to solving a problem directly based on the problem’s 

statement and definitions of the concepts involved.
• the brute-force strategy is indeed the one that is easiest to apply

• A brute force algorithm simply tries all possibilities until a satisfactory solution is found.
• It includes techniques for finding optimal solutions to hard problems quickly.
• Brute force algorithms can be:

◦ Optimizing: Finding the best solution among all solutions
▪ Example: Finding the best path for a traveling salesman.

◦ Satisfying: Finding a satisfying or good solution
▪ Example: Finding a traveling salesman path that is within 10% of optimal solution.

• Problems that can be solved by brute force technique include String Matching, Closest-Pair 
and Convex-Hull Problems, Selection Sort, Bubble Sort and Sequential Search

Advantages
• Simplicity
• Wide applicability
• useful for solving small-size instances of a problem

• It is a good method for developing better algorithms.
Disadvantages

• Rarely produces efficient algorithms
• Some brute force algorithms are extremely slow
• Not as creative when compared with other design techniques



2.1.1 Computing   a  n  

Definition:
• Compute an for a nonzero number a and a nonnegative integer n. 

Method: Brute – Force 
• By the definition of exponentiation, 
• computing an by multiplying 1 by a n times

Ex:  Compute 53

53  = 5*5*5  = 125

Analysis:
• The brute force algorithm requires n-1 multiplications. 
• The recursive algorithm for the same problem, based on the observation that an = an/2 * an/2 

requires Θ(log(n)) operations.

2.1.2 String Matching
• Given a string of n characters called the  text and a string of m characters (m ≤ n) called the

pattern; find a substring of the text that matches the pattern.
• find i—the index of the leftmost character of the first matching substring in the text
• If matches other than the first one need to be found, a string-matching algorithm can simply continue working until

the entire text is exhausted.

• A brute-force algorithm:

◦ Align  the  pattern  against  the  first  m  characters  of  the  text  and  start  matching  the
corresponding  pairs  of  characters  from  left  to  right  until  either  all  the  m  pairs  of  the
characters match or a mismatching pair is encountered.

Algorithm BruteForceStringMatch(T [0..n − 1], P[0..m − 1])
//Input:  An array T [0…n − 1] of n characters representing a text and an array P[0..m − 1] of m
characters representing a pattern
//Output: The index of the first character in the text that starts a matching substring or −1 if the search is
unsuccessful

for i ←0 to n − m do
j ←0
while j <m and P[j ]= T [i + j ] do
j ←j + 1
if j = m return i
return −1

Example:   Finding “NOT” in “NOBODY_NOTICED _HIM”

The pattern’s characters that are compared with their text counterparts are in bold type.

Analysis:
Worst-case: 



• m(n-m+1) number of comparisons are made
• the worst case complexity is O(nm)

Average-case:
• the average case efficiency being ϴ(n).

2.1.3 Closest-Pair Problem Definition
• The closest pair problem is to find the two closest points in a set of n points.
• the points  (x, y) Cartesian coordinates and that the distance between two points pi(xi,yi) and pj(xj, yj ) is the 

standard Euclidean distance

• Brute force algorithm:
◦ computes the distance between every pair of distinct points and 
◦ return the indexes of the points for which the distance is the smallest. 

ALGORITHM BruteForceClosestPair(P )
//Finds distance between two closest points in the plane by brute force
//Input: A list P of n (n ≥ 2) points p1(x1, y1), . . . , pn(xn, yn)
//Output: The distance between the closest pair of points
d←∞
for i ←1 to n − 1 do
for j ←i + 1 to n do
d ←min(d, sqrt((xi− xj )2 + (yi− yj )2)) //sqrt is square root
return d

Example
// BruteForceClosestPair(P )

//Input: List P with points p1 (3,9) ,p2(6,4) and p3(7,3) d←∞
i ←1 // range of i={1, 2}
j ←2 // range of j={2,3} 
d ←min(∞, sqrt(34) ) d ← 5.83
j ←3
d ←min(5.83, sqrt(1) ) d ← 1
i ←2
j ←3 // range of j={3} d ←min(1, sqrt(52) ) d ← 1
return 1
//Output: The index of the closest pair of points are p1 (3,9)and p3(7,3)

Analysis:
• input size is n points
• the basic operation is computing the square root



2.1.4 CONVEX-HULL PROBLEM 

 

Definition: A set of points (finite or infinite) on the plane is called convex if for any two points p and q in 

the set ,the entire line segment with the end points at p and q belongs to the set.                       

(a) Convex sets           (b) Sets that are not convex 

                         

 The convex hull of a set of n point in the plane is the smallest convex polygone that contains all of 

them. 

 

Method :  Solved by Brute force method. 

Example: A rubber band interpretation of the convex hull 

 Take a rubber band and stretch it to include all the nails, then let it snap into place.The convex hull 

is the area bounded by the snapped rubber band. 

                          

 A formal definition of the convex hull that is applicable to arbitrary set ,including sets of points 

that happens to lie on the same line, follows. 

 

Definition: The convex hull of a set of points is the smallest convex set containing  S. 

 If S is convex , its convex hull is obviously S itself 

 If S is a set of two points , its  convex hull is the line segment connecting these points. 

 If S is a set of three points not on the same line, its convex hull is the triangle with the vertices at 

the three points given. 

 If three points do lie on the same line, the convex hull is the line segment with its end points at the 

two points that are farthest apart. 

                           

 The convex hull for this set of eight points is the convex polygon with its vertices at p1, p5, p6, p7, 

and p3. 



Theorem: 

 The convex hull of any set S of n>2 points is a convex polygon with the vertices at some of the 

points of S. 

 

Convex hull problem  is the problem of constructing the convex hull for a given set S of n points. 

 To solve, to find the points that will serve as the Vertices of the polygon in question. 

 Extreme points. 

 

Definition: A extreme point of a convex set is a point of the set that is not a middle point of any line 

segment with end points in the set. 

 

Property: 

 

 Simplex method-algorithm 

 Solves linear programming problems, which are problems of finding a minimum or a 

maximum of a linear function of n variables subject to linear constraints. 

Algorithm:           

           Analytical geometry are needed to implement the algorithm: 

Step 1: First, the straight line through two points (x1,y1), (x2,y2) in the coordinate plane can be defined by 

the equation  ax+by=c where a=y2-y1, b=x1-x2, c=x1y2-y1x2 

Step 2: Second, a line divides the plane into two half-planes: for all the points in one of them ax+by>c, 

while for all the points on the other ax+by<c. 

 

Step 3: To check whether the points lie on the same side of the line, to check the sign of the expression.     

 n(n-1)  pairs of distinct points. 

                                  2 

                          other n-2 points                      

                                No of checks: n(n-1)   (n-2) 

                                                             2 

Analysis:   Time efficiency   O(n
2
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.2 Exhaustive search method 

 Exhaustive search is a brute –force approach to combinational problems. (permutations, 

combinations or subset of a set) 

 It suggests generating each and every element of the problem’s domain, selecting those of them 

that satisfy the problem’s constraints, and then finding a desired element. 

i. Listing all possible solution. 

ii. Evaluate solutions, disqualifying infeasible ones 

iii. Find the best solution. 

 

2.2.1:   TRAVELING SALESMAN PROBLEM 

 

Definition:  To find the shortest tour through a given set of n cities that visits  each city exactly once 

before returning to the city where it started. 

 

 Modeled by a weighted graph, with the graph’s vertices representing the cities and the edge 

weights specifying the distances. 

 The problem can be stated as the problem of finding  the shortest Hamiltonian circuit of the 

graph.( A Hamiltonian circuit defined as a cycle that passes through all the vertices of the graph 

exactly once) 

 Hamiltonian circuit can also be defined as a sequence of n + 1 adjacent vertices vi0, vi1,...,vin−1, vi0, 

where the first vertex of the sequence is the same as the last one and all the other n − 1 vertices are 

distinct. 

 All circuits start and end at one particular vertex. 

 

Method: Solved by Exhaustive search method. 

Algorithm: 

Step 1: Get all the tours by generating all the permutations of n-1 intermediate cities. 

Step 2: Compute all the tour lengths. 

Step 3: Find the shortest among them. 

 

Example:     Find the tour using Exhaustive search for the graph.                                                                       

Problem: 

                            
Solution: 

                                                                                                                                             



A solution to a small instance of the traveling salesman problem by exhaustive search . 

 

Approach: 

i. Find out all (n-1)! Possible solution. 

ii. Determine the minimum cost. 

 

Possible solution:  (n-1)! 

                                   Example: 4: (4-1)! = 3! 

 

 

2.2.2 :    KNAPSACK PROBLEM 

Definition:  Given n items of known weights w1, w2,...,wn and values v1, v2,...,vn and a knapsack of 

capacity W, find the most valuable  subset of the items that fit into the knapsack. 

 To pick up the most valuable objects to fill the knapsack to its capacity. 

 

Method:   Solved by Exhaustive search method. 

Example: 

Problem:         (a) Inside of the Knapsack problem.                       

              
Solution:         (b) exhaustive search. 

                                             



Algorithm:     

Step 1: Find all the subset of set of n items. 

Step 2: Compute the total weight of each subset. 

Step 3: Find the subset of the largest value.    

 

Exhaustive Search approach: 

Step 1: Consider all the subset of the set of n items given computing the total weight of each subset in 

order to identify feasible subset. 

Step 2: Finding a subset of the target value among them. 

 

 The number of subset of an n-element set is 2
n
 

 The exhaustive search leads to a Ω(2
n
) algorithm. 

 

 For both traveling salesman and Knapsack problem, exhaustive search leads to algorithms that are 

inefficient on every input. 

 Two problems are the best-known examples of NP-hard problems. 

 Sophisticated approaches  backtracking and branch-and-bound. 

 

2.2.3:   ASSIGNMENT PROBLEM 

Definition: 

 There are n people who need to be assigned to execute n jobs, one person per job. 

 Each person is assigned to exactly one job and each job is assigned to exactlyone person. 

 If the i
th

 person is assigned to the j
th

 job, the cost is a known quantity C[i, j ] for each pair i, j = 1, 

2,...,n.  

 The problem is to find an assignment with the minimum total cost. 

 

Method:   Solved by Exhaustive Search method. 

Example: 

A small instance of this problem follows, with the table entries representing the assignment costs C[i, j ]: 

                   

 Cost matrix C. 

 The problem calls for a selection of one element in each row of the matrix so that all selected 

element are in different columns and the total sum of the selected elements is the smallest 

possible. 

 

Feasible solution: 

 n-tuples < j1,...,jn > in which the i
th
 component, i = 1,...,n, indicates the column of the element 

selected in the i
th
 row. 

 

Example:   cost matrix <2,3,4,1> - feasible assignment.  

                          Person 1 to job 2 

                          Person 2 to job 3 

                          Person 3 to job 4 



                          Person 4 to job 1 

There is a one-to-one correspondence between feasible assignment and permutation of the first n 

integers. 

 

Exhaustive approach: 

Step 1:  Generating all the permutation of integers 1,2,….n. 

Step 2: Computing the total cost of each assignment by summing up the corresponding elements of the 

cost matrix. 

Step 3: Finally, selecting the one with the smallest sum. 

 

 

Example :    First few iterations of solving a small instance of the assignment problem by           

                      exhaustive search.                       

                              
                            <2,1,3,4>        cost = 2 + 6 + 1 +4 = 13  Optimal 

 

Permutation  n!   eg: 4! = 4.3.2.1 = 24 

Efficient algorithm for this problem called the Hungarian method. 

 

Time Complexity:  O(n!)                                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  



Divide and conquer technique 

2.3 Divide and Conquer Methodology 

 

 Divide-and-conquer is probably the best-known general algorithm design technique. 

 

General plan: 

Divide-and-conquer algorithms work according to the following general plan: 

1. A problem is divided into several sub problems of the same type, ideally of about 

equal size. 

2. The sub problems are solved (typically recursively, though sometimes a different 

algorithm is employed, especially when sub problems become small enough). 

3. If necessary, the solutions to the sub problems are combined to get a solution to the 

original problem. 

 

 Dividing a sub problem into two smaller sub problems. 

Example: The problem of computing the sum of n numbers a0,……,an-1. 

 If n > 1, we can divide the problem into two instances of the same problem: 

 compute the sum of the first numbers and to compute the sum of 

the remaining numbers. 

 Once each of these two sums is computed, add their values to get the sum: 

a0+………+an-1 = (a0+……..+a ) + (a +….+an-1). 

 problem’s instance of size n is divided into two instances of size n/2. 

 instance of size n can be divided into b instances of size n/b. 

 Size n is a power of b, recurrence for the running time T (n): 



General Divide and Conquer recurrence: 

T(n) = aT(n/b)+f(n) 

 of 

size n into instances of size n/b and combining their solutions. 

 order of growth of its solution T (n) 

depends on the values of the constants a and b and the order of growth of the 

function f (n). 

 Master Theorem: 

If f(n) ∈ 𝜃(n
d
) where d ≥ 0 in recurrence equation, 

then 

Example: Computing the sum of n numbers: 

The recurrence for the number of additions A(n) made by the 

divide-and-conquer summation computation algorithm on inputs of size n = 

2k is 

A(n) = 2A(n/2) + 1. 

a = 2, b = 2, and d = 0; hence, since a >b
d
, 

 

unknown multiplicative constant , while solving a recurrence equation with a 

specific initial condition yields an exact answer. 

Examples for divide and conquer: 

 Binary Search 

 Merge Sort 

 Quick Sort 

 Heap Sort 

 Multiplication of large integers 

 Closest pair problem 

 Convex Hull Problem 

 

Binary Search: 

Definition: Binary Search is an efficient algorithm for searching an element in a sorted array. 

Method: Divide and conquer. 

Working: 

 a search key K with the array’s middle element A*m+. 

 If they match, the algorithm stops. 

 the same operation is repeated recursively 

for the first half of the array if K <A[m], and for the second half if K >A[m]. 



Three conditions: 

 

 

Steps: 

Step 1: First find the middle element. 

Step2: Compare the searching element with middle element. If they match the algorithm stops. 

Step3: If k<A[m],search in the left side of the middle element. 

Step4:If k>A[m], search in the right side of the middle element. 

Step5:Recursively do the process until the element is found. If the element is not found in the list return 

-1. 

Algorithm: 

Binary Search(A*0..n − 1+, K) 

l←0; 

r ←n – 1 

while l ≤ r do 

if K = A[m] return m 

else if K <A[m] 

r ←m – 1 

else 

l ←m + 1 

return −1 

Example: binary search to searching for K = 70 in the array 

iterations of the algorithm: 

 

 

Analysis: 

 count the number of times the search key is compared with an element of the array. three-

way comparisons: k with A[m] 

i) k=A[m] 

ii) k<A[m 

iii)k>A[m] 

Worst case: 

 find the number of key comparisons 

 inputs include all arrays that do not contain a given search key, as well as some successful 

searches. 

 

 

 

 

 



Recurrence relation: 

 

substitute n=2
k
 

Cworst (2k) = Cworst(2
k-1

)+1 

=Cworst(2
k-1

)+2 

. 

. 

. 

=Cworst(2
k-k

)+k=Cworst(1)+k=1+k 

Cworst(n) = 1 + log2n = 

worst-case time efficiency of binary search is 

Average case: 

 

 Successful search: 

 Unsuccessful search: 

 

Time Complexity: 

 

 

Best Case Average Case Worst Case 

𝜃(1) 𝜃(log2n) 𝜃(log2n) 
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HEAP SORT
Definition:

• Heap sort is a comparison based sorting technique based on Binary Heap data structure. 
• First find the maximum element and place the maximum element at the end. Repeat the 

same process for remaining element.
• Heap sort is an efficient sorting algorithm with average and worst case time complexities are

in O(n*log n).
• Heap sort is an in-place algorithm i.e. does not use any extra space, like merge sort. 
• A heap can be defined as a binary tree with the following two conditions :

◦ The shape property—the binary tree is complete,
▪  i.e., all its levels are full except possibly the last level, where only some rightmost 

leaves may be missing.

◦ The heap property—
▪ Max heap - the key in each node is greater than or equal  to the keys in its children
▪ Minheap - the key in each node is Smaller than or equal to the keys in its children.

Method: Divide and Conquer
Steps: Consider an array Arr which is to be sorted using Heap Sort.

1. Initially build a max heap of elements in Arr. 
2. The root element, that is Arr[1], will contain maximum element of Arr. 
3. After that, swap this element with the last element of Arr and heapify the max heap 

excluding the last element which is already in its correct position and then decrease the 
length of heap by one.

4. Repeat the step 2, until all the elements are in their correct position

ALGORITHM 
HeapBottomUp(H[1..n])

//Input: An array H[1..n] of orderable items
//Output: A heap H[1..n]

for i ←[n/2] downto 1 do k←i; v←H[k] heap←false
while not heap and 2 * k ≤ n do
j ←2 * k
if j <n //there are two children
if H[j ]<H[j + 1]

j ←j + 1
if v ≥ H[j ]

heap←true
else

H[k]←H[j ]; k←j H[k]←v



Example: 
• Initially there is an unsorted array Arr having 6 elements and then max-heap will be built.
• After building max-heap, the elements in the array Arr will be:

                     

After all the steps, a sorted array is.

Analysis:
Worst Case Time Complexity Best Case Time Complexity Average Time Complexity

O(n*log n) O(n*log n) O(n*log n) 
Space Complexity: O(1)

• Heap sort is not a Stable sort, and requires a constant space for sorting a list.
• Heap Sort is very fast and is widely used for sorting
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UNIT III 
DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE  

Dynamic programming – Principle of optimality - Coin changing problem, Computing a
Binomial Coefficient – Floyd‘s algorithm – Multi stage graph - Optimal Binary Search Trees –
Knapsack Problem and Memory functions. Greedy Technique – Container loading problem - Prim‘s
algorithm and Kruskal's  Algorithm – 0/1 Knapsack problem, Optimal Merge pattern -  Huffman
Trees. 
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3.1.2 Coin Changing problem
• Give  change  for  amount  n  using  the  minimum  number  of  coins  of  denominations

d1<d2 < . . .<dm.
• Dynamic programming algorithm  

◦ assuming availability of unlimited quantities of coins for each of the  m denominations
d1< d2 < . . . < dm where d1 = 1.

◦ Let F(n) be the minimum number of coins whose values add up to n; 
◦ define F(0) = 0. 
◦ The amount n can only be obtained by adding one coin of denomination dj to the amount

n − dj for j = 1, 2, . . . , m such that n ≥ dj .
◦ consider all denominations and select the one minimizing F(n − dj ) + 1. 

▪ 1 is a constant
▪ find the smallest F(n − dj ) first and then add 1 to it. 

• Recurrence for   F(n)  :  

• compute F(n) by filling a one-row table left to right
• computing a table entry here requires finding the minimum of up to m numbers.

Example:
• Amount n = 6 and denominations 1, 3,4. Find the denominations of coins.

• To find the coins of an optimal solution
◦ backtrace the computations to see which of the denominations produced the minima
◦ the minimum was produced by d2 = 3. 
◦ The second minimum (for n = 6 − 3) was also produced for a coin of that denomination. 
◦ Thus, the minimum-coin set for n = 6 is two 3’s.

• The answer it yields is two coins.



ALGORITHM 
ChangeMaking(D[1..m], n)
//Applies dynamic programming to find the minimum number of coins
//of denominations d1< d2 < . . . < dm where d1 = 1 that add up to a
//given amount n
//Input: Positive integer n and array D[1..m] of increasing positive
// integers indicating the coin denominations where D[1]= 1
//Output: The minimum number of coins that add up to n

F[0]←0
for i ←1 to n do
temp←∞; j ←1
while j ≤ m and i ≥ D[j ] do
temp ←min(F [i − D[j ]], temp)
j ←j + 1
F[i]←temp + 1
return F[n]

Analysis:
• The time efficiency of the algorithm =O(nm) and 
• space efficiency of the algorithm �(n)
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3.1.5 Multi-Stage Graph(Finding Shortest path)

• To find the shortest path from source(S) to sink(T) in a multistage graph of G=(V,E) which
is a directed graph.

• A Multistage graph  is a directed graph in which the nodes can be divided into a set of
stages such that all edges are from a stage to next stage only
◦ All the vertices are partitioned into the k stages where k>=2. 
◦ Each stage consists of set of vertices
◦ The cost of a path from source (denoted by S) to sink (denoted by T) is the sum of the

costs of edges on the path.
• Dynamic  Programming Method

◦ obtain the minimum path at each current stage by considering the path length of each
vertex obtained in earlier stage. 

◦ The sequence of decisions is taken by considering overlapping solutions.
• The multistage graph can be solved using 

◦ Forward approach
◦ Backward approach.

Example:
• Stage 1 consists of node S, Stage 2 consists of nodes A,B,C, Stage 3 consists of nodes D

and E, Stage 4 consists of node T



i)Backward approach:
d(S, T)=min {1+d(A, T),2+d(B,T),7+d(C,T)} …(1)

Compute d(A,T), d(B,T) and d(C,T).
d(A,T)=min{3+d(D,T),6+d(E,T)} …(2)
d(B,T)=min{4+d(D,T),10+d(E,T)} …(3)
d(C,T)=min{3+d(E,T),d(C,T)} …(4)

Compute d(D,T) and d(E,T).
d(D,T)=8
d(E,T)=2

backward vertex=E
• Put these values in equations (2), (3) and (4)

d(A,T)=min{3+8, 6+2}
d(A,T)=8 and the Path is A-E-T
d(B,T)=min{4+8,10+2}
d{B,T}=12 and the Path is A-D-T
d(C,T)=min(3+2,10)
d(C,T)=5 and the Path is C-E-T

Substitute these values of equations (2), (3) and (4) in (1),
d(S,T) = min{1+d(A,T), 2+d(B,T), 7+d(C,T)}

= min{1+8, 2+12,7+5}
= min{9,14,12}

d(S,T)=9 and the Path is S-A-E-T

Solution: 
• Shortest distance from Source node(S) to Sink Node(T) is:

The path with minimum cost is S-A-E-T with the cost 9.

Algorithm for Backward Approach
Algorithm Backward_Graph (G, K, n, p)
//solve multistage graph using forward approach
//Input:Given a weighted Graph G
//output: Path with minimum cost using Backward approach
b_cost [1]<- 0
For j = 2 to n do
r<-get-min(j,n)
b_cost[r]<- b_cost [r] + c [r, j];
D[j] = r;
// find a minimum cost path
P[1] = 1;
p[k] = n;
For j = k-1 to 2 do
p[j] = d[p(j+1)];



Analysis:
• Time complexity O(|V| + |E|). 

◦ |V| is the number of vertices and 
◦ |E| is the number of edges.

ii)Forward approach

d(S,A)=1
d(S,B)=2
d(S,C)=7
d(S,D) = min{1+d(A,D),2+d(B,D)}

= min{1+3,2+4}
d(S,D)=4

d(S,E) = min{1+d(A,E), 2+d(B,E),7+d(C,E)}
= min {1+6,2+10,7+3}
= min {7,12,10}

d(S,E) = 7 i.e. Path S-A-E is chosen.

d(S,T) = min{d(S,D)+d(D,T),d(S,E)+d(E,T),d(S,C)+d(C,T)}
= min {4+8,7+2,7+10}

d(S,T) = 9  
Path S-E, E-T is chosen.

Solution: 
• Shortest path and distance from Source node(S) to Sink Node(T) is:

The minimum cost=9 with the path S-A-E-T.

Algorithm for Forward Approach:
Algorithm Forward_graph (G, K, n, p[])
//solve multistage graph using forward approach
// Input:Given a weighted Graph G
// output: path with minimum cost
For j = n-1 to 1 do
Let r be a vertex such that is an edge of G and
C[j][r]+ cost[r] is minimum;
Cost [j] = C[j][r] + Cost[r]
D [j] = r
P [1] = 1
P[k] = n
For j = 2 to K-1 do
P[j] = d[P(j-1)];

Analysis:
• Time complexity O(|V| + |E|). Where the |V| is the number of vertices and |E| is the number

of edges
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3.2.1 Container Loading

• A large ship is to be loaded with containers of cargos.
• Different containers will have different weights.

◦ Let wi be the weight of the ith container, 
◦ 1 ≤ i ≤ n, and the capacity of the ship is C

• To find out how could the ship can be loaded with the maximum number of containers.

• Greedy Technique:  
◦ The ship may be loaded in stages; one container per stage.
◦ At each stage select the one with least weight.
◦ Then the one with the next smallest weight, and so on until either all containers have

been loaded or there is not enough capacity for the next one.
◦ This results in loading maximum number of containers.

• Example :
Suppose that n = 8, [w1, … , w8] = [100, 200, 50, 90, 150, 50, 20, 80], and c = 400.

• Only 4 containers are loaded for the capacity 400 
• Not the optimal solution

• Applying Greedy technique
◦ The containers are added in the increasing weight order 
◦ 6 containers (greater than 4) are loaded with capacity 390 - Optimal Solution

• The  available  capacity  is  now(400-390=  10  units),  which  is  inadequate  for  any  of  the
remaining containers.

• Greedy solution we have [x1, , , , , x8] = [1, 0, 1, 1, 0, 1, 1, 1] and Σxi = 6.



Algorithm

Analysis:
• Time complexity = O(n log n)
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3.2.4      0/1 Knapsack Problem

• Given n objects and a knapsack or bag. Object i has a weight wi  and the knapsack has a
capacity m. Object i is placed into the knapsack, then a profit is earned. 

• The objective is to obtain a filling of the knapsack that maximizes the total profit earned.
• Since the knapsack capacity is m, it is required that the total weight of all chosen objects to

beat most m. 
• Formally, the problem can be stated as 

• The profits and weights are positive numbers.
• A feasible solution is any set (xi,.x..n,) satisfying the conditions. 
• An optimal solution is a feasible solution for which the objective function is maximized.

Example:
• Use the following instances of  the knapsack problem, find the subset for maximizing the

profit. 
Knapsack capacity = 8

Items Weight Profit

1 1 15

2 5 10

3 3 9

4 4 5

Solution:
• Step 1:

Find Profit/Weight ratio

Items Weight Profit Profit/Weight

1 1 15 15

2 5 10 2

3 3 9 3

4 4 5 1.25



• Step 2:
Arrange in the descending order

Items Weight Profit Profit/Weight

1 1 15 15

3 3 9 3

2 5 10 2

4 4 5 1.25

➢ Select the item which has the maximum profit/weight ratio and the weight must be less than
or equal to the capacity of the knapsack

• Step 3: 
Use Greedy Technique, find the optimal solution

✔ Take Item 1
weight of the item 1 = 1 ≤ 8

Add item 1 into knapsack
{1}      
8-1 = 7 ------> Remaining need to fill

✔ Next, Take Item 3
weight of the item 3 = 3 ≤ 7

Add item 3 into knapsack
{1,3}
7-3 = 4 ------> need to fill

✔ Next, Take Item 2
weight of the item 2 = 5 ≠ 4

Can’t add item 2 into knapsack
{1,3}
7-3 = 4 ------> need to fill

✔ Next, Take Item 4
weight of the item 4 = 4             = 4

Add item 4 into knapsack
{1,3,4}      i.e) {1,0,1,1} [1 – Included, 0 – Not included]
7-4 = 0 ------>  knapsack is full

Answer: 
Optimal Solution is {1,0,1,1}
 Profit = 29

Analysis:
Time complexity – O(n)



3.2.4 Optimal Merge Pattern
• Definition

◦ The problem is to merge a set of sorted files of different length into a single sorted file
with minimum time.

◦ This merge can be performed pair wise. Hence, this type of merging is called as 2- way
merge patterns.

• To merge a  p-record file  and a  q-record file  requires possibly  p + q  record moves, the
better choice is merge the two smallest files together at each step.

• Two-way merge patterns can be represented by binary merge trees. 

• Consider a set of n sorted files {f1, f2, f3, …, fn}. 
• Initially, each element of this is considered as a single node binary tree. 

Algorithm: TREE (n)
for i := 1 to n – 1 do
declare new node
node.leftchild := least (list)
node.rightchild := least (list)
node.weight := ((node.leftchild).weight) + ((node.rightchild).weight)
insert (list, node);
return least (list);
At the end of this algorithm, the weight of the root node represents the optimal cost.

Example
• Consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of elements

respectively.

Solution 1:
• Merge operations are performed according to the provided sequence, then

M1 = merge f1 and f2 => 20 + 30 = 50
M2 = merge M1 and f3 => 50 + 10 = 60
M3 = merge M2 and f4 => 60 + 5 = 65
M4 = merge M3 and f5 => 65 + 30 = 95

• The total number of operations is 50 + 60 + 65 + 95 = 270

Solution 2:
• Sorting the numbers according to their size in an ascending order
• Sequence - f4, f3, f1, f2, f5
• Merge operations can be performed on this sequence

M1 = merge f4 and f3 => 5 + 10 = 15
M2 = merge M1 and f1 => 15 + 20 = 35
M3 = merge M2 and f2 => 35 + 30 = 65
M4 = merge M3 and f5 => 65 + 30 = 95

• The total number of operations is 15 + 35 + 65 + 95 = 210



Solution 3:

• The solution takes 15 + 35 + 60 + 95 = 205 number of comparisons
• This is Optimal Solution

Analysis:
• Time complexity = O(n log n)



(31) 
Co nsiuell fo 
encoda a given xt 

JUFF MAN TREF 

13 4. bn cha 
iven t 

xEncoding a text that CompsesSmbos form n-8ymbo 

aphabel ba aManing 
to each the 1ext % sqrmbobs 

CoceuOTd . 

8ome Sen uo nco bs 
daludthe 

Codowosd. 

ixacd- lenh encoding stirg the 

-asigns 
to each s|nmbota 

bt 5tnig 

Samee lengh m (n 2 log, n) 

- uent Aettes :e( 
a (.-) 

uent sttes 9 - ) 

Vatable -lengh_encodng 

- assigns 
Codewnds 3 iherent lengtia to eleent 

Symb ovs 

Problem how many b 3 am 
2ncodoe text Tepresent the 

astsm bot. 

Ae p*-free tod es ( Pt Celoas) 

no Codeos d Can Simply ap a bt shinq 

Canstouct a frea 
that would assiqn shorl�r bitshmgs to hug 

euan 84m boB and longea ones 16 fou-equen 8ymbots. 

tluan algenthm 

Step Inihalize n 
one-node 

Tecs and akel the 

Snbe ha alphabet ven 

Racsd the reauonc 

to thdicale the tree 's weght. 

and 
abel them wi th t 

heach 
tmbol 

cr s tree 's oott 

Stepa Repect the hollouwng operation unhl a singe ce ts 

obtanad 
Ftnd fcolvees 

oith tka 6mallest eqht 

Make tAem the lefl an TqKt Su Bfvee a nao 

ecerd Tio Sum 1 heu tuueighs en the root the 

w hee as Uk uegLS. 

3.2.6



41 ffman lue-A a tonbiulsa by tutlnan azor en 

8.14 
pl 

Tho te 8ynbet alphebe } A,B.,D, -f win 

lle wing eccuAenco tequentias n olett mada uy 

4, the n bek 

symbot AB D 

l.25 
2 0 o.15 

lunan lee Co nstuc ticn )hange IKi cheaibs n ayssduua 

th prcbe bilt 

i) Cemhu rodes 
er a hubbas A 

basd 
n prbabi k e 

.35 
A 

(0A 35 

A 

o.5 2 

.4 

o.2
D 

(0-25) 
A o.2 



Hu-pm an 
Skp encode |h e 

10 l4t branch 6hould b 

Liqrvd w, o 

*gnt brach heul4 be 

o 35 
o.25) 

Pe 
o. o.15 

B 

The Tesuling Code wede; 

Bymbot|A B D 

eauan4 |0.35 0.} 0,2 D. 0.1S 

Lodo wo7 tt 
100 00 O 0 

DAD DAD 8s enco ded4 

da codes a 
BAD-AD 

The Verage numbea bu pex symbot 
n he Code 

AXO3s+3 

xo,|+2x 0. 2+a 
xo.2+3x0.15 

= 2.25 

to wse at kast 3 biu þea Smb ot. 

Tatto a standasd 

en )h bx Prob 

id length ancoding Miasue 

man Code achieves CompregGion Talio a standasd 

a Comession algoitlbm ctfcbivenau 
3- 2.95 Xtoo / = a5 / 

3 

- luman eoding will use 25 less memoy 
uu Than 

ngth encoding 

Simp liu e vens atiey 
- opimal tntoding. 

ady 

du adv i the encoded 
text to mak ts 

to uhelude 
M Coding table 

3.9 oecoding pesi be 

ynamie Huthnann enoung: 
Vecoms the dundvantaqe 

Codin e s updaled ach hme a new Symbt u 

Tead orm tha Soutext 



ompelZv alqoilhm aia Codo woyds not to tndiodual 

ymbets bt to Atunar 1 4ynb 
achie ves botfer ad mere Ttbut treus 

tueghled peith lenqth 
Sumtey Jew 

A- -kngth 7, the path fem cot the at 

de ikim hees ue drtisiGn Ges 

n-4 

es 
( 

(n) 
(n>3 
no 

no e 

numbea i u choten with probabil p, lFe u 

S iP ength the path fem oot t te a 

n4 
and Pa0.l, P2 0.2, P= 0.3 and P0+ 

the munimum wigAli4 páth a i the ht mast nz n 7 

Apphta hons 

H man ncoding ues in Ccmpres algr h 

Huthman's code is 

ao dsd fen 
wnd in na plag 

used un tansmu ssion da 

3 

h 
lleing dala 

code
Comtruet a Hman 

C 9 E 
chaaocli A 

Probab1li y o. . 0 2 0.ls 0.1S 

text A BACA BA D 

b)Decode l loxt whse encod: rg u 
a)ncod \k 



Consthuet Th hJhman ue and give lka htman 

encoding Ihe dollo): 
Va I 3 A5 

equant 51 o S a 

m an 
encou ng o Th plowing ala 

value b 

euen S S 45 

Hman ki s a buna e 

wugalid palk lnath rom h Rcot 
o kR leaves 

hat 

h leavesi 

Con lanuna a st predand 
wughk 

h 

wuga 

*tThman 
cede eheo dung 

cheme 
lhat a41gn b 

basud 

bt 
2nto duna scheme 

nan on lheu reguentus 

stnas 
Tchaua 

eluis 
bascd on 

lhu treguen 

ven xt 
aYe ehasais 

Os amd 

bcd e g h 

P a R S 
R8 513 3 

D 2 4 

R3 
2 

13 



UNIT-YL 

ITERATIVE 
IMPROVEMENT

The Simple Method ha Maximum Flo Problam -

Maxi murm Mate hing un B.partite Graphs - The Stable 

Marn 
Maimum 

The Stable 

Matehina 
Pro blem 

INTRoDUCTION 

Tterate Improvemant Algotthm 

algeithm sesign Technqua for Aolvng 

ophmizatcn problems 

Steps 
Start wit a feasi ble seluti on 

2. RLpeak ke ollowing &tap untl no impoyemant 

Can be Tound 

)ehanne t 
Cuanent easible 

galutitn & a 

heasib le soluh'n 
wit a 

belE value 
he 

ejecbve funeio as optmal 

3. RLun lk ast easible 
souhm 

as opkmaaR 

ramps: 

. Foad 
Fulkaason 

algomthm 
or 

maximum fuo 

pro blem 

.Simplax Mehod 

A. Gale- ShaplaH 
gothm 

or le 8table mauia 
3. 

Maximum 

matehing 
77eph 

Yaces 

3 

pro blem 



THE SIMPLEX METHOD 

Linear hoqi am min 

- The general proble m oplimizing a linea funetim 

Several Vamables Aubject t5 a set inea Cornstiaints 

maumRA minimize) C, t + CnXn 

functim 
-The general 

+Cn Xn 

a, X -ajn X, e(or2cr =) b 

Ti m 
Kubjett E a;, 

. Xn>0 

s mathematiian G..Bantzig falky lineas Hogrammirg 

invenlo of he Simpley ma ltod 

Gleomenite Tnterpre ta tion of ineo hograrnning 
undamenlal opotias h poblen 

Ex 
Anear Hogamming Poble m tn two Yatables. 

maximze 3x+5y 

2ty 4 

X+ 36 

ubject to 

casi ble heas ble Kolution any point (x) azfas all the constraunts 
the p7o blem 

asible Tgion sei b allasble pcin t 
The poink f e easible 1q1on muut shtist al th Constraint 

the problem 
task: 

To fhd an opima| Soluhin, a point tn the easi ble 7alon 

z3x45 with the lasgest Value the obechve uretion 34+5y 

4.1



Soterahe Jmproe mon 

lgot thm Frani ble n 
teratve ImPoovemeríl 

aloptth s ho algoallhm desa 

1emuqu e solukaopth nizal 

roble mma 

gtart lh 
ablo 

2thuha 

Ppent 
Ihe Jolloi"gA sp unh) 

ne impove mont an be fond. 

(o,2) 

tA0) 
Boluhn to a feasnblo gol, hen 

wiha bet luo t 

oeb ve fu nhon 

PeleTn las1 fta be Boluhon 

as ophmal 3+5e 20 
3x5ye lo 3x151Z 

evel unes o atbjecbve une bon 

Cop) 

3tSy-20 
ncasi ble > inoar Proreming po blems si empfcasibla 

wokeasible 
neasible problems de net have optmal 3oluhens 

TeA are Ca lle 

Example : oblem's teasible vion s unbaupdel 
unauaubes t 

+3y 
easible egton toill be me unboundcd. 

maxenue 2=32tH 

extheme Points: 

An optimal Folu lion to a une ar poqam mina prubk m ca 

be ound at one b the etxenme poi nts b s feile regan 



TME SIMPLEx MEtAD 

naa Paeqrarmmu 
Me lhd used fan k solu ion 

Pro ble ms (PP) 

neas hegsamming Paoblams 
Runehon ts be 

LPP Cons is a unear objeci ve 

ma i miksd O mini mi zad bje ct tb atain Constraintg 

Ke om nta equations 
on Lh euau tes 

eneral Toam 

oa m inimizea) CX, t +(n n 

Bu bje ct to i X,t. ..+áin 
4lon or =)b: 

pa t m 

ma mLRe On r -)b 

O, . n>o. 

Porar oming rblem n so Vaiables 
xample 

naa 

3t5 makima Ze 

4 ubjed o 

t 

x2, zo 

Daduee 

Step 1 Set up IRe inihal Limplex tableau 

Step a Detamtne he har he pttmal soluion has bean 

Step a 

aachad by examining all enti es in tke lst aou 

aTall the enttu ae non naAaive, ka optimall 

8 olutiom has bean nac had, Procead to tep 4 

ngaive anhies, the 

Kaeched, Prowae 
b)T thave ase orne ox MoAL 

opimal soluiom has not been 

Btep3 
Slep 3 Peaform Ih pivot operalion. K luan to stepa 

Step Deliim unn IKe opima Seluim. 



MarimiRe 3xt5 
V 

8ubjeet o 6 
v 

31-50o6 

Soluh n : 
pivet Column 

Step 
(en temg vana ble 

Conyet tnto glandax om 
addng 

Maximu 2za 32t5ytoutoV 

ckoosenA 
a pivot 

aow 
(dapautina 

vaiabl 
lack Yanabes 

Constan 

Subjectb tyt u= 4 
Pirot tolumn 

V 2o ehoose minn mum Yaliw 1) 

So Aepau bng vauable is V 

Step 2 Simplex tablaau : 
abi BFS CoTC4R 

bo hi eYTeMapb V 

, in ual 
o 

pvu6 

T 

bas | o4 

yaiades v 1. 3 0o 6 

pint 
élement T 

Pivoting 

cb -3-5 val of zat (9e4) rom o 

Cojicien ls obj. fr wit 8gn Tevease 
Basie feasibla goluhn (0, 0, 4, 6) 

makes pivot element value a i 

-divide Tke pivot aasby Pi v 

ekement 
}=0 

Thu table is nst opînmal. 

ophmalutalt 
Beuwne kz enhis n e objeative Aw 

have negahve numba 

Step3 tap3Next tteraio 

1)-fend pivot column, þivot Raw, 

Pivot element 

35 o oo 

Pivot tolumn- enlerinq vauable 
Raplaung ohr ALos 

pivot Aow- dapasbng vau ablu Row= Row C. Rew 

egumi 

pivet teumn n2moSt 
Rotd 3 Rew3 - C Retu 

n eetive value 

ni ettive rcu C Constant pivot colam n 

-5)- Row i = Rowl - 1. Rew 
Ro 3 Ro 3 (-5. Row 



ophmal st 
Thu labe u phmak 

Because all enhies 

vlha cbjecbve Au 

non nagabve 

Row uv 

-1(= o 

3 o 3, -o)» 

o-I( Y)-- 
4 2) = 2 -o 5/3 1 

Vvaue ofo 
Row3 

The maximal 

Thu table 

optmality last 
net ophmal -3--5).%= 4/3 

-5-(-5).) = o 

objesbveune 1 

O-(-s) o o 

O --5) Ya) = s| 
-(-s).= lo 

-) entmes - n2gative um 

Bane aside scluicn ( o, 3,3, o 
* $lep4 Next Iteya tion Lineaa hqrammi na ro blam 

-Yund pivet Column, pivt 7ou, pivot eamant 

Pivot celumn 

manimza 3t 
Bubject to-ty <) 

axty4 
-1/3 (eatesing yaiable) 

Pivet Aow: 
20, j20 

3 

maximixe bet52 

Bubjet to Kit 2 <5 

3X+ 2 4 1 
So. Tau dpauting raiat) 

u v 

nsing abular tom 

pivot ett 13 m 27-3+ 4% 
ubjt lo ax -3y+Z 3 

2n+y-z 410 

T 
max, 2 -ytAz 

abjut b hoc-39+Z3 

- makes pivot elt to b I 

o %- 3 

Pivohing:Rplaung olhi adws 
Row2 

Rcw Row - Row= Ro w - Rou -V3 to) = 
Vs() =-2 Row3= Row 3 - C. Rouoi = Row3-()P Ys-V3C-Y) = V2 

Ru 3) 1 

-V-/s)a) o 

-(-4) (o) o 

o 3 

at (3,),0,o) 

E Basi Tasibe scuhon3,1,0,)| z-14 --) (3) = 



Dual 2oblem. 
Pimal o blem 

A insar rgranming oble m 

maxi mi Ra 

,rn b b fon 1,, Subject to 

n 

Cons deved as pumal, en Jdua dard 

inca agamming roblum 
m 

Dal P>oblem 
minimiRe 

Subject to a 9: 9 to j =l,, 

xanp proble 
Wai Ie dual Problem as ce alkd wIKs Probk m 

inimu a brtEy 

Subjet t a0x tloy 
Aoo 

loxt 5y 2lo 

5x+ ISy zISDo 

Solu tion rebanm 

Shep Wite doon a tableau for lhe pim ebam 

Constant 
2460 

A 

S 

S S 

8 

Step 2'Inichange ke Celumns and deos k adau, 

and head l thaee lumns h Acsulbire ali 

wi I he Veuables u, v and w 

adlau 



Constant| w 

AO 5 6 

4D0 2166 

Step8 Censidu he lableau as 
nial impux ablaou, 

eguau Om .e) Btan dad maximi Ra t n 

Pkoble m 

Dual Poblem
maximu Ra A 

oOu+2oov+ 

ISdo w 

8ubjeet 
to Aou+ 

lov+5w < 
out 15V +IS w 4 

uv, w 20 

Ox Nov/DEC doIS) 

Delemune Detesmune k ual linear Tam o7 h ella.ing P 

Mavimu Re 3a +b+c 
ab 

Subjeett a+ btc 43 3 

a+btc 44 
3at3b+bc4 6 

3 3 64 

a b,c 20 

Soluo unimZa 3u+4vt6 

Subjedt to 3|3 u+t3 w 3 
3 

u+v3 w 
u+V +6w 

uV, o20 

ud Ik dual Ik anear Progamming problk m 

maxim Ke 

u bjeet ti xt*2 t*g 6 



The ore xtreme Peint Tho enem ) 

*Ang inear Prqamrning pioblo m with a nonempty 

bounded feas le ed has an ophmal soluhion, 

An optmalAnlution (an aluwa be un4 an 

exe nv pel o oblemaable °q1t 
Sohe a problem by tompuling ha value of kz objechve 

unchon at each exte me peint and Selechn9 he ona 

wi lh he best value 

Sinlex Methoe 

Inspect only a small hechm ch h exlTeme points 

the easible Augton beoe 1eachu ng n opBBmal one 

SiepsJdea 

i) Stari by ider 

easible eqien 

an extoema pmn he 

)Then Chock ohelher one Car qet an impoved alue 

The objechive unction b ng tb an adjacen t 

Extieme point 
in) 1f ut s nst ha Cse, The urrext pet u optimal, 

adja corit extreme 

T it s Tha lase, poCAad o an 

Peint w h an impoved va lu the dbjechve parchon. 

aa tin numbea b 3eps, alet Thm tei l 

eilka nenth an xtveme point whee an ophmal 

goluhon oceus c do lamne hat no optrnal Solu ho 

ero 

An oulun Thi Simple M6thod 

1ask o tansla le Ik eomabrc des cuphom of le 8mplx 

ne thed nfo algptthmu ally language alje bra 
aPplyinplx mehöd, IKe poblem has v beaPP 
presetod n a pocial -fm eala.1 tanedas. jon 



The andar Tm has followina Teq uiremens 

) It musl be a maximiza lio broblem 

A the consthaimts must be tn ha om unoa 

uai O wi lK nOn noga ive igAt- Rand Kide 
to be non noqatve 

A 1he Vata bles rm us be JequTed 

qenaral linsa roqpamming oblem un slandard fom 
-

TM Cons17aink &n unknontns h 2m) a 

maximue (*, t .+Cn Xn 

8ubjet to ai2,t+inn* bi , wtee bj 2o fr i=12,, 

IZo ,XnPo 

matrx notaioms 

maximi Za Ca 

Subject t An =b 

ohere 

Cn 2 

an a A12 
b A 

amn. Lam m bm 
Any linea o amming proble m can e hanssomred vnE 

an eg Ya lent poblem tn sBandard om 

objechve unci on 
pooblem 

muumu2a Teplata4 by valert 

prDblam maumizing ha ama objective unction 

C Teplacod y i 
Consi1auints tnegual neplaecd by cn egu yalknt 

eAuahom by adding a slack vana bli 

tnesual bes 
equauty: t 4 

2t3y 2bJ ty+u = 4 



eP 
Slandard fom 

maximi ze 3 159 +Out 
OV 

4 
ubject ts tyt 

u 

+ tV 6 

K,y, u,V 2o 

ind I optimal ol u hion; 

Then obBaun an opthma Solution to Problem. 

ad i provides foT ideniitting ext p tints the 

easble 1e 
base olution 

ncn baue toondinalis Set to Reo bolove solung t systero 

basiic to ovdinalis olstained by soling tha qem 

Rcwle tKe sysrem eonsraunT uahon 

Basic feasi ble sol uhion (BFS) 

all all the 
CoOTdinales 

abasi� 
Solub n eu 

C K n cgabve, te bas1c Bolution l& 
Called a bas1e fasiba soluhi 

a Seaies adacan 

a basie fraside Soluhin 

The simplex 
methad peqreskes 

tfrough 
a Seates b adjacon 

vauies 4 the objcehve 

ex tre me Paints 
wilhLHUaasing 

Vauies 4 the objechve ucb 

Each pant tan be reprejented by Simple x 
tableau 

-a table stoaing the unoainabnt 

basi ecagi bla Aolu hoy comesping to he 

exte me ponl 

able has nm Aouvs 
ad n+) tolumns 

m aou the ta ble eonláin the Coefhiue nT a 

Contiant equabon, 
wth the last tolumn's eny contanim 

he esuah on's *1gh- hand Ade. 

- Loturm s ae 1abe tes by 4he mames te yaviea bles 

A cws a 
kabeled b the base 

vauales 

he Valuos ate t th lagt Column 

Vauabdes 



ast Aow a Simplax ableau s laled th 

bjecbve ao 
* sini haiaad by lhe Co itien k he obecbie tunctis

with Aei Sgn Aaveiseed 

unehn al the inithal point 

and the Valua Otha objribve 

On Subsesuent itevaltons, the objective Row a ansome 
Stuplex ablkdu 

basu feas bla sauiu 

CO,0,4, 

O 

base 
Vata bes 

cbebve Yatue xat (o, o, 1,6) 
3 5 

he obect ive aa used cheek ewhehev the cunant 

abludu represent an optimal Solubm 

-at does if all the enbtes h the efetbve An , excupt Ik 

ne un lhe last Ceumn a non negaivee 

h is net lase, , any he non nagaive entoies 

n dicates a non bas1�Yaiable th at tan betoma basic 

t t ext tablhau. 

*The tableau s net opbmal 

nagabye Yaluo n The 
-Cotumn hde tan namse tho value 

the objechve unchon 232r5ytoutev ah J 

b nAsing th yalue b the * -Coorcinalk tha Cuuent bas c 

feasi ble Aduion Co,0,4,6) 

Compens ati 
a" dase th by adjusing tRa values 4 th 

banc yaMables u and v 8o that the new point u gutl feasible 

whu uo 

y cwhere V2o 
Must be sahstus, 

men 4,6 



-tnUlease he Vale 1 x oo o l47 lhu lasa esl amount 

Poble the poin) (4,0,o,3), an cdiacant to (o,0,4,6) 

ereme point the hcasible regi On Z=12 

abve Value n the -Coumn h abiethve Acw 

we tan n(ao ase the Value b te obeche unch on by 

ng the Valua the 9-Coondinat 

ubal basii feasi ble soluli on 0,0,4,6) 

his Roques 

Cn the 

shere u2o 
+U 4 

where Vo 

means , 
mun 

nuease lhe Valeo um o to , the larg est 

amount ossi ble point (0, 3, 3, 0, anothur 

ad atent to (0,O,4,5) exfyeme point wrth k=10 

*hegabve enk es n lh obechve cow 

selact he mesTnegabve 
o 

Theula qialds The largest 
unaaase tn e dbjecbve 

uncion's Yalue Pea unut change n a Yamable's vala. 

how much 

easibi l Cnsiiaints impose dieent 
limi G om 

each the Yaviabs 

Enting Yamable> A nw basie Yauable 

Fntn 
Pivot Cekumn 

(oumn n enlüing yanable 

mak tha Pivot cotumm byt Pivot 

deparhrg 
Yamable 

-basn yaviable to become he non basic n 

next tabkau . 

o get tv an edjacert exizeme pint wits a lavqen Valers tte 

ebjechve funehn, neLs to th uase lh entesig Vaiable 

by 1he lasgst amout posble 



Chcostng a depashng vanabe 
e each pesi ive enhy n tha pivot telumn 

" Comput -a tio by div ding the Rouo's lost entr by 

Tho enty n th pivt calumi 

e -Aatios e 

6y -2 

The &ow with th Smattast 6-Aaio do tamines ha 

de pahg vaua ble . ie) iable to be tome on ba3ic 

Mark he aow the dapartbng Yasiabla, Calle Ihe 

Piet Aow, by by and donoe t lew 

* these ae no pesi be entes t he pivo cotumn, no 
tfhese 

-aatio Can be compu lid. 

Steps ts hans form a uant ablaau to ta naxt na 

tanstorTmation > piotbrg 

trst, divide all He enties db e pvot kow by he pivot, 

a ey h the Pivot Column, b obtaun eu 

aowne 
) The n Replace each d ohea ROUs, ncluding the 

ebjechve anu by te dsenta 
Aow C. iouw nss 

c Row's enly tn pivt Column 

AOw- 1. Aow 

AOw 3-(-5). aow, 
new 

The sinLplex melkod ham fuoms ta bleau nt te 

olowing tabloa 



LA 

2 
3 

basic feasi ble solu hen (o, 2, 2, 0) wi 

Value the objec bveune hion, which s equal to lo 

It not oplima 

0,2,,o) 
wib an tHueayd 

Next teation 
V 

3 3 

Boluhim (3,1,0,o) 

baie 
Jeasible 

Solutim ( 3,1,0,o) 

Tt s 
ophima,all 

the enbies n the objecbve 3ow a 

nomnganve 

* The 
maximal 

vaue "b he objecbve 
ncion 

s equal to H. 

Summaa bhe 
Stmplex 

method 

Step Inilializafim 

Simplex mathod 

xPresent 
a aiven 

inaa prog7arnm ng proble m n Slanar 

Set up an inial a bleau twith nonneqa tive enbes 

the gHl most coumn 
and m olko 

Compbing the mxm idanh by manix 

mColu mns dofine he ase Yaia blus the inibed 

and m olk 
Coumns 

inihal 

basle 1easi ble olu hom 



giep ophmalily list 

Ihalu tha etes n the2 cbjetbve Aow non . ngabe. 

stop 
he tableau repreßeng an optimal Zolutiom 

basie yana bles values a tn The GhtmesT (olumn 

basie 

Aemainsng, non bagie vanable's Yalua a zao3. 

Slep indsng IKe eniurg Yaua be 

Se lect a nagabe eny oon anona tha fust r 

elomonts the objecbve aaw 

Mark ik Colu mn to indilate h enteng vatable 

and lh pivol 
gumn. 

step Tnding l dapaating Y uabla" 

* Fon each pesibve enlay n tho pirot Column, calco)ate tha2 

e-Aato by diuiding that Aows enky un aigi Rg mos 

Coumn by enty cn the pivet olumn 

Hund IK Aao wi th the 8malast -vaho 

The aouo to tndi Cate h depatng yau able and th 

maak 

pirot Ao 

Step 4 Toaming the naw 
ableau 

DiuiAa all tho enhtes tn the þivot ano by b enby t ths 

Pivot column . 

- Bubiact om each the olher Aous, indudina the 

ebje cbve 2ow, le nao pí vot 2Du mut tipud by thc enby 

the pivot otumn o the a 

Raplace lhe label Ohe Pivol aouw by the vauable's 

name the pivot totumn and qo back to step 1 
nama step 

AnalysLs 

The number o operahon pea 
liahan pa iliahan Olnm 



Example roblem 

The 
Pro duuces tablas 

Cannon H I furni ure Company Produt ces tobles 

ho us ohabo 

Each lable ta kes pw 
hour 

abo 

renuires aund chairs. 

pom he ca perny depastmeni Ea ch chair 

3 hours °bcapenhy and 1 heu f fnishing Duing 

he Cnient uweck, 2Ao hou Capentny ime aue 

ayai lable and loo ho us inishing tine Eoch table 

ehair 

produtad gives a profit 
$7o and ecch chai 

a PLefit ¢s Howmant ny 
chais 

aand ables 

should be made? 

Tasles Chains Constroins 

ResouTce 

aapenthy Chr 

Finishing (m) 

Unit Phostt |$7o 

Cbject ve unehon 

Maximuze jox,+50 2 

Constauns 

A 9*2 240 

2x t K2 

Non-negaiviy Condu bion: 

K, 2 20 

PP Maximize 1o +502 

ubject to 1+3X224}0 

2R +X2 £loo 



sin 8implex mettod Sove 

Std femn 
* ini hal BS 

*Sniial Simplex table 

Finding ophrna o luion . 

$4100 

Example and plans b 

A fammer 
ows 

a oo ace am 
and Plas T 

plant at 
mostTAyee Aps. 

he Seod Jor op 

A B and C eess 4, 20, and 30 per 
acve vespechvely. 

fam 
Bead for A 

CLCe

The 
Ovops 

30 peT 
acre 

espechvel 

Àmaximum 

3200 can be 8pent on 8eod. Coops A, B 

and e eguire I,2 and 
wortdau pea 

ala,Te>pecively, 

woTkays evailable 

on 8ed. Goops A,B 

and theye ase maxímum 
16o UTkays 

civailable 

i theavmer 
ean maka a poft b 4oo per 

aere 

and $ 2oo peraere 

aere 

the 

on op A, 300 pes acTe on aop B and aoo per ae 

on Caop , homan 
as 

each Clop 8ho uld 

lanlad to maximize Pk®fUb 

aTney on Cop B 

aLs each np 
3he ulA be 



THE MAXIMUM FLOW PROBLE M 

e i2ing 
*mauizing Thelow a mateial Th7ouah a1iansportation 

netwon 

FD Na 
aanspoatahon 

nehooak can be Aopresenl�d by a connoclsc 

numbeaud fromn 
5n and a 

Deighted dtgiaph wi n Yea hes numbeed fom 15n and a 

Propeabies 

Se edges E. wb The eloing popeaties 

Conlai ns exactly on2 Yenl�K wib no etertng edges 

and asumad to be 

Thus veatex is Coallod Souito2 

mumbeed 
edqes ' 

Conlauns exactty one yertex twit5 no lea ving 

Ths yeater ig calod he 8ink and asumad to be 

numbered n 

1) The weigit u: h each daad edge (4j) u a 

PoSihve in ge, Ca lled the ekae Capau 

loo natoenk A Aiqraph salisttng ha paoperbiea 

Metuooak qraph 

Yukex numbea-names 

edae numbtu- LAqe 

Copahs 

a) o 
A low can be adiiaclid witbout Cosumung 

amout bthe matexial 

dolal amóunt ha mateial enteving an inlimediata 

adding an 

ouw-Conseavabom AvduukemanE 

Vealox must be equal to the tolal amount eb tbe matental 

lcaU the Vealx. 

amount sent Thioug cdgel1) 
ow-Conservauom unuement ean be ex pæsse by equal y 

Constunt 
oa t3, 3,n-j 

:j,ide J:j)eE 

4.2



Sums n lh laE and aPt hand Sides eepre the 

total itouo and oulfloo entertng and lea Lina 

Veat t, kes pet hvely 
Tho tdal amoent of t matorta| leaving the 8burce must 

en up at the 8th k 

in 
j:(vj)eE J:.eE 

Valu of he low: bläl outftow fory Ihe 8auta 

otal tn tlow tintd ha nk. 

deno l�d by v 

manem 22 ovea al Þosible loss n a neuosk 

an asignment Tea numbe2s Kii edge l ) 

a a qiven 
natworthat salis D TD- Casenvabiom 

Constrainls and Capat Constvai nb 

o 4i j 

Maximum- flow pAoblem : 

8tated as optimzation Poblem " 

nmiza V= 

j:Cj)eE 
Xt=o for t=2,3n-Rubect t 

j:ej)ee J: j,i)eE 

oi; U; trevesy eage (j) eE 

Fond - 
Fulkis en 

Mtd- 

Jdea pteyaive mpoveme nt Augmenting -Path Mettod 

)Alwa start wih IKa Xeuo ftow 

set Xo 
i) Then, on each natiom, toy to -fehd a prth pon 

) Alwa 

om 

pah u (allacdlouw augmanhing 



) 96a hlo- auqmentng path sound adjust ha 

low alomg le esges the paK o gae a loo 

m Aniaaased Vaue and Ry otnd an auqmentna 

Path for tha no0 lo 

iv) noo lowauqmentinq Path 
an be jount, lka aent 

owis epimal 

xample Step )Zono Ho o 
) Pas 

in)flouw 

VDPals 

XoRo fto oA 

o2 o5 /2 

iteain 

7 

Tao amounla Sert Though 
each edge ae sepanalkd 

vom tho ege Capaaies by the slashes 

Step 
Seaich fer a low. 

augmentingpalh 
1om 

Aoue to sink 

by following 
duèclad edges lij) or wkich ki cuunant 

tow i 

om 
ouice to 8ink 

less than the ea capac- mis 2, 5, 2 

- TAanti hy 
the pmenbing PaTk 273-7b 

An aease 
he louo alona 

the pat 
a maumum 

wti ch s the 8mallest 
unused capace the edqGes 

awu 

N oo 
snot ophMal 

teralien2 mius,1,5,8.4 
/6 

step - The value cay be naased alomg lhe path -3 

I4 3 5 

along Ihe path -33 Á* 

by un oali ng h low by eAqes 

b 
C4), l43) (, 5) and 56) and eeew asinq dk by | cn 

adge la,3) 2/s becemus s s 35 
Cbackwaud dg 



VA 

/ 
The mcnimal flouo IS 3 

t is maximal. 
To thd a ftow- auqmontng pa15 a ftow *, neeol fo Cansiela 

patths om 3ouaCa to ih undealging unduclad aph 

th ohich any two comsecuh ve Veabitas i ar ehe 

)Conneclid by a dunedad edge tpom tojwth 8me 

pesbve untused capacl =uizij 

TOnuaid cAges 

-

BackuaA edges Backun n) Conmeclas by a duaas cig. om j to 

Pitveau *ji 
josuand cdges ; 

tJ. 
backwaad cigea 

it 
4 >8 395>6 

,4/3), (a,s Y onoud elges 
S 

C32) backuaad elge . 

* Ter a ien fouo- augmon byg path, 

A- minimum al the unused capau ies 7ii 

omwond adges and aU the fos b 

backuwaad esAes 
DUease the Ceuant oo by n cm each orwaad eAge 

dutiease tt by the amount m each backwaid edge. 

-oßtasn a feasible ttow whose yalue 8a uruts giealis than 

the valua predocoys07, 

yi- nfeamad ale vatex dn a ftow augmenting Path 
4 Potble Lembinabons towaad and backuwdelge 

i i , , 



he necw flow ll 8alshy the Capaal Censt 7ain 

*Adding a to io lrw Cm the tuvst esge bthe 

Augment1ng pauh wlthUease tho value e tha low by 
Path 

tho ttov Value anAaases al least by 1 dn 2ach taa ion 

btAe augmorin9 -path 
mathod. 

The augmonting - pa th mathod has o stop Jeaun tz numbe 

The trial ow 
aways 

uma out to be marum al , irrespebive 

ba squono o eugmening 
paths 

itaaioms 
maimal, irreapetive 

degradation auugmanurg-path mathod 

olu Fpbicieny 

ofu olu olu (4) 
(c 

(a 
Utaqe posihive utg. 

Augment the Zeao Tiow almg the path 1>?33>4 

oblasn the How valle | () 

AAugmene that ttow along he pathI>x 324 wi tn aas e he 

fo w 
vlus to 2. (t) 

Contrnua elachng the paù tlow 
- uuga ni ng haths, ndad a 

ow gno nh ng paths, ngad a 

to tat h 2u itevations to veach the maumumo 
valuo au (4) 

Augmanbvg Tnibd Zorotow >254 

A 

Augmanbng neuw low along tho path |>3>4. 

Shcntest- augmenirg-path
at stdabeled- ust scanned algosr tbm 

USe beadt6 ust Aeaich tv genaale augmen birg paths uith 

Hha Aoast numbea ee 
aumnhng- path methoc 



abe ling 

maakong a nou yealar wi th tuo labelk. 

ust ka bel amount oadAibonal hau tAat can be brought orn 

Tha sauce to ke vealox beeng abelad 

Senmd label name , tP2 VealQx fom uwtu ch tho Ventex 

being abelzd wag iaehed 

add f on -sign h tthe 
Belond label 

to thcicali whethea tAa vealix was Teachod 

The 8oua te Lan be alwaus labelod t6 , 

fon the olher yahcos, Tha la bels a Conpules as holloro 

oront 

Yater i he baveasal 9uo by a dreclod edge 
=u 

om&lo j wib poSihve unused capacal Aj *uG*K, 

-Th unla beled vea exi s onnoclad fo tha 

Then vealäx s labeled wi t6 Aj,i', whaa 

min Li, aii 

unlabelad val i ü toneclid to the ront 
vata i 3 

the tvavesal ueue by a duocked edge onj b witt 

peh be toto i then vealaei 
abelrs eith 

35 this labelinq- enhancad ta veasal ends up tabelng 

Tho &ink, The culant ow can be auamen läd by The amaunt 

hdial4 by the sipk% at Rabel 

* Augmen labon ls peformad aln the augmantng Pah 

tyacod y otlowing ne Yenlex detnd label rom 

Shk lo 8ouia 

- The cNent tlow quanhbes asu nlaased m tha 

edges ha daeuased on Ma backuai 

EXample. 
edges b tus path. 

theSnk 
Yemauns unlabeled atin he iavesal 

uCe betomes empy, The algoortbm chuuus tie 

CLUe nt law a maumum and stoP% 

max flouw -5 

(tH Ha) 
ug mantina paths -nwen exua nm 

S-q-b-t 
3--t -b 



plica lin , the algoilhm to tRo nouen 

tY7en to 

old of3 

ol6 2 0/s 

o3 o 
o13 ol 

3,1 Ouew I 4 3 56 
Augment the flow by a (tRe Aink3 first 

kabel ) alorg tha path ->>3 
BSwd 

el ol3 
3 /2 1,5 

,4t 

o ol 
3, 1+ 

Augment tha ftou by 1(the inks fist 

abel) al ong the path 
4>3->5>6 

usue: 4 3 5 6 

A 

, I* 

unlabellad), 
the Cauent ftow u maxima 

t)T3 

No auqmanting patk (tfu Acnk u 

Queue 
1 1 

GckITHM 
Shovtest 

Augmenling)a t6 ( 6) 3 emuinng l so) poss ble but 4-3 Tot posle 

algon thm 

Boulce , Anqle Snk n, and 

/1nput 
: A nutwenk twith Single 

Soua I, Single Snk n, an 

on ib eges (*) 
pentventen

Capaatieg u on espes (*,) 

Implements he hotest augmenbrg 
path algon Thm 

/ cutput A 
mayimum z 



dge (aJ) tn lhe ne huesk 
a 

Aabel he SouiCc twh r, 
and a dd Th SouACe to TVe 

empli ee 

ohile nel Emply() do 

AFsent 
(Q); Dequtene ( Q) 

Ao /1enasd eges 
ito vey edge om 

�nla bel 

imn 
i, A labei jwith 

nqtutue (@, 

o eve edae m 

d backuatd elges 

unlab elod 

muni eilab 
t ,t 

nqueue(a, 

the sunk has ben laheled 

Jn 
ww E1 

the &ec Jabel Yealex | 

ese 

i i the va ln uidtalid by ts Seland 

Aabe 
enase all Vatex labels excapt tie mes the So uce 

eu i alize Q coth the Saute 

Alutn 

Netwonk Cud 

A ut induted by pubbning Vahas a nokicok unlo 

8ome u bset X Centasnung the Bouu and t Compument 

x lemtai nu ng 1e Ank S 1he Set al! the edges wi th a tai 



nx and a hoad tnR 

donolsd hy C(Y,x) 

x a, 3,4,5, 6f c(v, x) 15), (n 

2,3,4,5 743 
c (v,y)%.6), 5,) 

X 

*1.R,4} .5.4 (x, x)-9), (, s), 11,3) 

2apateli 1a ut 

*The capacaly 
a cut C(xR 

deneted e(x, ) 

Aofthed 
as 

theum 

Capaibes 
Tho dges 

That 

CxRdeneted e(x, *) 

n-no bVea lis 

Compose the cut 
m-ne -ges 

Ox Chaubes 
ae qual to 5, b f1 5, b 1, 

peth- (Xmm 

Q(m) 

Bmalest 

iumum 
Cut 

Ct with the 
mallst Cpa 

Analysus:Time 
etbiuenty 

tho Sher last ugmenirg path algm = |0(nm) 

Ihtoe Max to co Min- Cut 
Thiorem

reiork Ls 

maxtmum 

ow , a 

he 
Value oha 

maXimum 

low un a 
nek 

minumum uut 

Capacly b 
ual b the 

PacO Jut x 
- heasi bla ow b Value v 

netuonk. 

tCCx, 7) - ut Capacity 
e n Tha netuonk. 

low 
aesete 

he cut 
dohnad 

as 
Me 

HeaanCe 
belaeen 

the sum 
TAe Tows 

on e edgu 
ffom X to 3 

Ros on the dges 
bom 

ho x 

Sum the 

v, the vale tAe iouw 

Xji 
ex,te xx V ex, j c 

ic) VC 

- ihe vaui t a Cannot excesd he copaa 

w the nehwos K 

any eT 

X 0=< (X 
tcxjex 

uTeA P eg fe theorem 



EAmond 
MAxMUM MATCHIN N B1PARTITE GRAPHSs 

Ropresent etemen tuoo iven Re by Veahtes aph, 
th edges belioaen Veai ces that tan be paued. 

matching 

A malching a a qraph u a subset bedges th 
tha propealy thatno tup edges hae a veala 

maxumum malchana 

a maxumum Caadinall� matchena 

- ua matching wi th the laagest nmber )es 

Bipatite qraph 

maximum -matchunq problem 
matcung n a 

The pro blam n oirg a nmax 

gnven aaph 
Bolved by Jack 

Edmands n 1965 

Bipaahle aph: 
-all the Veahcos Can be paah bone cnto too dujoint 

sets V and , not nxassaul 
ta &ame 8ine, 30 

tha 

eyey edge 
conn 

a 
Yertex n one 

Tha &ets o a Vater uD 

to ota Set 

A A qaph u bipaahtë 
veahces 

can be cotored n 

oo codor& So ha eveau edge has ia veai ceg 
Coloved tn 

diherent Colors 

eves 
-Colorabla 

Graphs are also sad tv be 

* Iteratve -

impovement\technique 

xhat M - matching t a biparhte aph G=(v, U, E) ors aph G=(v, U, E) 

nd a mathng wTh move ekgeg 

ery evey veatex i he v or U s matched (has a mala). 

4.3



e) senves as an endpont an edge ui M, Au tan not 

be dome and M a maximum matcung 

*Te tmpove cLnan matchung, bolB Vand U mn ust contasn 

unmalchad (frea) veahces ie) Yeabcas that aAO net 

Lnudent lb any edg un M. 

p 

( 
Ma (4,,6, 1){ 
Vaices I,a,3, b,7,10-foee 

Vabces 4,5,8, 7 -matchad 

^nuase a unent matchung by adding an edge belioan 

- adding Ct6 totha matthing M3 Ch6),(4,), (5,1) tuo eeYeb es Stp2 

Augrnenirg pah: L6 

nda matching lages han M by mateching Yeatex 

- an cdude the edag la, 6) tn a neuo matchng 

Yaq uives emoval 4 Cl6) Step 3 
-n cluson ) in the nw matching. 

M, t), (2.6), (4.6),6 
Augmaning þath: ,6,,7 

(0) 

aase tha Sine a 
ment matching by Consducbng a 

Simple path Tom a rec veater th V b a free Yeatex th U whose 

adges aK alteanately un £-M and th M 

*Iha ust edgg the path dos not belong to M, the Aecnd dmi 

Aoos and 8o on, unhl the last edge. that does nat belng to M. 

- a path u catta4 augmenbin9 with vespect to the malching M 

Palk fom a fjea Vate v6 a 

eyeatex adding Augmentah on 
X Since the denqth dh an augrianti ng path is alwaus odd, addinq 

fo the malching M the path s edges n The odd -numbeed Posib oNs 

and dalehng {om it the palh's eclges un tho even-numbeied pebon 

els a mat ching wrihon moe edge than n y 

$uch a matchinq ad us tment clled augmontab on 



3,8,4,1,5,0 L an Qugmn hng peith hs the malching Me 

T adding to Me tho edaes (3,8).(4,4) and (5, 1o) an4 

dslub ng (4,e) and (5.9) 
obtoun the matching Ma - fciD,(2,6), (s,8), c4,1),61) 

Step 4 Maxtmum Matc hinq 

3 Augmanting path: 3, 8,4,9, 5,1o 

The matching Ma no1 only a manimum matching but ako 

Pexyet 
ie) matehing hat matches al ho veabcas the Toph 

Thaorem A matching M a ma?ümum matchi and ony 
thee eriti mo aug monbg path wr espect b M. 

an augmaming palh with respect to matching M axu, 

then the Ainge the matching can be thdeased bcgmanatim 
xo aug menbng path with eapect t5 a ma tchin g M exisb, 

then the matching a maimum matchi ng. 
M- maximum malchin9 n 

M*IM) 
MOM= (M- M*)U (M1-M) 

Genwal Method r conshucbng a maximurm maihing 
8tart wih Some iniia) matching 

-Find an augmonhng pah 

- augment the auryent natchi ng along the poith 

- When no augmonina path an be found, liaminata tho algontim 
re barn the Rast matching, wuch is maimum. 

Specittt algothm: 
- Boa'Yeh fer an augmoning pat6 foT a matching M by a 

BP ike traversal the qaph. 
- Btasts Simu ltanacusy at att tho fpee venticas n me the 
Ats V and y 



auqmonbg_path. 

exis, ú an odd-langth path that donnoch a r veaar re Veaa 

tn V with a reo Yealox tn U and which, unlos t onsist 

a snle edge zigs" jnm a ven lix un V to anothe 

yatx mate un U, then 2ag 
" 

back b v along the uniqualy 

dahunad edge om M and Ao on unt a7 ven tex n U 

Yeac hed 

Ruls hor labelui nq veabos duing tho Br- uke toavensal tho qaph. 

Case 1 ( the ueug4 hront veal�x w un v) 

- u is a free veatex adjoont to w, t e used au the olher as the olher 

endpoint an auqmonbng path B0the la balinq s topg and 

ag mentabon g the matching 
ommences ommenCes 

- u s not hre and tonne lid to w by an edge hot Un M, 

Aabl u with w unley t has bean, alwady labelad alneasy labelad 

Case 
(the Kaont ventex w s h u) 

Rabel 
mate th V u th w 

- w must be 
matched 

and 
label i mate th V w th 

Pseudocode 

ALGORITHM 

Maimum Bipa ite Matching (G) 

Fnd a 
maximum 

matchinq 
u a biparhlà 9raph y 

aBFS-uke 

ravesal 

Tnput: A biparb 97aph G- (V,0, E) 

Output 
A 

maximum 
- candinalla 

matching 
M tn the nput eraph 

Ani baliza 8et M h edges 
wth Some yald matchinq 

inihai2 queue CQ with all tha ree Veabi ces V 

whule not Empty (O) do 

wk- FAont (@) Dequoue (a) 

tu V edjaant to w do 

on eve 
Vealox u 

M-M U w,uf 

VAW 
wbile v labeled do 

U vetex thcl Calicd by V lab el 

M M - (v, u) 



V Vealkx ndicalid by Lu's JabelL 

MM u(V,u) 
meve oll vealox labcls 

Ainbabze n uuh al hyee Vea bes tn V 

break 
else 

(w ,u) M and 
unlabeled 

Jabel u with w 

nqueue( Q,u) 

else 
Jabel the mate v w tui th w 

ng ucue ( R, V) 

Ae liin M 

Appli cahon h the alqon th 
CumenE Matchng &inihali2aduOLLe 

Vealx abeunq encyalad by the alyonthm 

Oueue I3 
uue 2 3 

Augment omb 

5 

uue 3 auu 8 6 8 4 

Augment fom 7 

4 

uwe 868 41 

Augment hom lo 

Vueue .emphj = maximum matchùng 

Aralysis = Time ethueney the algortro u inO(n (ntm)) 



THE STABLE MARRIAGE PROBLEM 
Veasim bipayti matching callod the stable mamage problom 

and Considea a set Y mi,ma ", mn b n mart 

Set X= wi,wa wn b n uwomen 

Fach man has a prefexanca it ondaving tho wonmen es potenhal 

mamage pautnovs with no hes allowod.mama 
Atach wom an hay a prereneo st 4 the mon also with no ies. 

the tale mamage problcm Dala fo an inslante 

Wemen'sefeyence3 YanKig mabx 
men's pe en ces 

31 Ist 2hd 1 2nd 37d Ann ea Sue 
Bob 2:3 2 
Jim 3, [La 2,1 

Tom 

Bob aa Ann 3,3 Sue Ann Tim Tom Bob 

Jim Loa Sue Aan ea Tom Bob Jim 

Ann Jim Tom Bob 3,2 2,1 D2 
Su ea Sue 

Tom 

fst posihon Poi bion 3 w 

the ms prefare ust 
pau 8,1 

Second >posihon m ta 
w's Prearena uat 

Mamage matching M geloclad om 
ua8et n (m,w) paius whose mem bers ase selecid hom 

dusjnnt 
n-elementsb y and x h a Ona 

e) eaeh man m om u 

Ona-one fasnuon 

paiyed wi5 exactuy one uoman 

om X and VI Ce VeNsa 

Blocking: Pa 
Apair (m,u) , whare meY, we X, AS Baid to be a 

blockina pa o a marmaA Matching M man m and 

ae not matchad tn M but thaH pree each 

Woman w 

othen to theui males h M. 

ex (Bob, lea) - blockng pais 

- Bob prefeas lea to Ann 

lea pre Bab To Jm 

Stable 
A maTiage nmatching MS Calla stable i thare LS no 

blocking pau jor it 
blockng pai tr t unst ahe 

4.4



Sla ble mamage probla m 
-to hind a sla blo mar1ag matchung non's a 

oomon's peeunco 

Stabl Mamiage Algntlhm 

Input A Sct n men and a sel 1 n 
tdomon along w 

A Set b 

Aanking% tAa 
uomorn by each man and Tankings 

ith no tes allowed in he 

Tho mon by each woman wi th no ttes 

Aankings 

Output: A slablo mamiag malching 

Step 0 S1ani uilh atl the nmen and w0nen bei ng 

Step 1 Nhile heve au eo men, anbr7 aly 8eta ct ono of tho 

Step 1 
and 

do The folles toing 

Roposal 

The Selec lad free man m piopeses To to, lhe. next 

woman on his proeronce ist 

Rogponse 

P 
G ee, 8he atcape Ihe proposal to be 

matchcel with m 

*ThShe is not free, 3he Compae 
m Lw h hea 

Cunrent matë. 

che prees m to him, sha alcepls ms popa 
- 

makirg hea ormen mata yee; 

otheawise, she simply Teiecs 
m3 prop cs al, 

Joating m a 

Kte Retum ths set o n matehad Pars 

Apphabon the Stable manage Ao tm 

Step Ann ea Sue 

Bob 29 33 

Jim 3 

Bob Propried to Jo 

lea ctecapled 
FR mLN 

3 
Bob, Jim Tom 

Tom 
3,2 2,1 2 



Step a Sue Ann lea 

2/3 2 33 Bob Jim proposect to ler 

reo men Loa Tee c läcd. 2 

Jim 31 

Tim, Tom 21 2 
Tom 32 

steps Ann lea Su 

Jim popeSed to Su. 

Su ae eoplid 
rea man Bob 213 2 33 

Jim, Tom Jim 3,) 3 2] 

Tom 3,2 2 2 

Step 
Ann lea ue 

b 213 2 33 
Tom poposed to Sue 

re man 

Sue Teje clicd 
Tom Tim 3, 13 2 

Tom 3,2 2 22 

Step 5. 
Ann lea Sue 

Tom Propoted lo Jea 

a Tep la cod Bb witb Tom 
PRoo men Bob a13 2 33 

om Jim 31 3 2,] 

Tom 3,2 2 2 

Step 6 Ann lea Sue Bob preposed To Ann 

aoo marn: Bob 23 l2 3.3 Ann acceplád 
Jim 

Bob 
Tom 3,2 2,1 2 

Bob- A nn 
Jtm -Sue boxo tol aeeoplic propoia 

undulined all rejeclid proposal. Tom koa 

PAopex bes the 8table matage probem: 

Thae m Thesla ble marage alqotthm feami nates a4i no 

more h an iterabons wi 6 a slabla marota outrt 
moe 

DThe algothm 3fas uoth n men hav ng the total a 

women on ihaa nankina Lsk 

On each tetahon, ona man nmakes a proposal to a 

OmAN 

The algorthm must 8top ale move Thanr teabens 



Peove the ena malchng M u a skHa mariage mae 

nstable bloc kung pall 
man m and a woman w ,w 

unmatchad th M. 

iterahom 
m must have propesed l5 w bm som2 texahon 

Lwha wr w Aofused m's prupoal c acaplad Lt 

um m a subBe9ueM teIah On wiyer 

but Aplacod 
hiqtur-yankad match, w'a mala th Mm 0must e hugha 

Analys Time Compii o(n) ) 
on w's pretese Nco est han rm 

num bu on ov 
women 

Ahadvantae 
cvOTA mens Peon cag ovea wosen prferanos 

man 

The algai thm aluoass ye ald man -op bimal 4 

gende -oph ma stable matchiga 

Men's Peference Men's Pdererce Woman's Pr 
Joman's 

34 A PE 3 
AB 

8PT S P A 
BDA 

D 

e S 
BA clb 

Maximum Mtchap 
Men's Pteu womns P 

A W C D A 
W Y Z 

tA nie 8 A 

(T {launch lay DLY 
MaxLmum -to 

(Penc Shir 

A b Supu modey 

) D 
R 3 213 3,2 43 

3 

4 ) 34 22 

33 4) |22 
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